Step
*
4
of Lemma
fps-deriv-mul
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. f : PowerSeries(X;r)
6. g : PowerSeries(X;r)
7. x : X
8. fps-ucont(X;eq;r;f.d(f*g)/dx)
9. fps-ucont(X;eq;r;f.((f*dg/dx)+(df/dx*g)))
10. ∀f,g@0:PowerSeries(X;r).  (d((f+g@0)*g)/dx = (d(f*g)/dx+d(g@0*g)/dx) ∈ PowerSeries(X;r))
11. f1 : PowerSeries(X;r)
12. g@0 : PowerSeries(X;r)
⊢ (((f1+g@0)*dg/dx)+(d(f1+g@0)/dx*g)) = (((f1*dg/dx)+(df1/dx*g))+((g@0*dg/dx)+(dg@0/dx*g))) ∈ PowerSeries(X;r)
BY
{ (RWO "fps-deriv-add" 0 THEN Auto THEN RW  FpsNormC 0 THEN Auto) }
Latex:
Latex:
1.  X  :  Type
2.  valueall-type(X)
3.  eq  :  EqDecider(X)
4.  r  :  CRng
5.  f  :  PowerSeries(X;r)
6.  g  :  PowerSeries(X;r)
7.  x  :  X
8.  fps-ucont(X;eq;r;f.d(f*g)/dx)
9.  fps-ucont(X;eq;r;f.((f*dg/dx)+(df/dx*g)))
10.  \mforall{}f,g@0:PowerSeries(X;r).    (d((f+g@0)*g)/dx  =  (d(f*g)/dx+d(g@0*g)/dx))
11.  f1  :  PowerSeries(X;r)
12.  g@0  :  PowerSeries(X;r)
\mvdash{}  (((f1+g@0)*dg/dx)+(d(f1+g@0)/dx*g))  =  (((f1*dg/dx)+(df1/dx*g))+((g@0*dg/dx)+(dg@0/dx*g)))
By
Latex:
(RWO  "fps-deriv-add"  0  THEN  Auto  THEN  RW    FpsNormC  0  THEN  Auto)
Home
Index