Nuprl Lemma : rv-disjoint-rv-mul2
∀p:FinProbSpace. ∀n:ℕ. ∀X,Y,Z:RandomVariable(p;n).
  (rv-disjoint(p;n;Y;X) 
⇒ rv-disjoint(p;n;Z;X) 
⇒ rv-disjoint(p;n;Y * Z;X))
Proof
Definitions occuring in Statement : 
rv-disjoint: rv-disjoint(p;n;X;Y)
, 
rv-mul: X * Y
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-disjoint_wf, 
random-variable_wf, 
nat_wf, 
finite-prob-space_wf, 
rv-mul_wf, 
rv-disjoint-symmetry, 
rv-disjoint-rv-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}p:FinProbSpace.  \mforall{}n:\mBbbN{}.  \mforall{}X,Y,Z:RandomVariable(p;n).
    (rv-disjoint(p;n;Y;X)  {}\mRightarrow{}  rv-disjoint(p;n;Z;X)  {}\mRightarrow{}  rv-disjoint(p;n;Y  *  Z;X))
Date html generated:
2016_05_15-PM-11_47_23
Last ObjectModification:
2015_12_28-PM-07_15_52
Theory : randomness
Home
Index