Step
*
1
1
1
1
4
1
2
1
1
of Lemma
extend-half-cube-face
1. k : ℕ
2. a : ℚCube(k)
3. b : ℚCube(k)
4. c : ℚCube(k)
5. ∀i:ℕk. (↑Inhabited(a i))
6. 0 < dim(b)
7. ∀i:ℕk. a i ≤ b i
8. ∀i:ℕk. (↑is-half-interval(b i;c i))
9. dim(a) = (dim(b) - 1) ∈ ℤ
10. i : ℕk
11. dim(c i) = 1 ∈ ℤ
12. ∀j:ℕk. ((¬(j = i ∈ ℤ))
⇒ ((a j) = (b j) ∈ ℚInterval))
13. (a i) = [snd((b i))] ∈ ℚInterval
14. (fst((b i))) = qavg(fst((c i));snd((c i))) ∈ ℚ
15. (snd((b i))) = (snd((c i))) ∈ ℚ
16. ∃!d:ℚCube(k). ((↑is-half-cube(k;a;d)) ∧ (∀i:ℕk. d i ≤ c i))
17. b' : ℚCube(k)
18. ∀i:ℕk. (↑is-half-interval(b' i;c i))
19. ∀i:ℕk. a i ≤ b' i
20. x : ℕk
21. x = i ∈ ℤ
22. v3 : ℚ
23. v4 : ℚ
24. (c i) = <v3, v4> ∈ ℚInterval
25. v5 : ℚ
26. v6 : ℚ
27. (b i) = <v5, v6> ∈ ℚInterval
28. v7 : ℚ
29. v8 : ℚ
30. (b' i) = <v7, v8> ∈ ℚInterval
⊢ (((<v6, v6> = <v7, v7> ∈ ℚInterval) ∨ (<v6, v6> = <v8, v8> ∈ ℚInterval) ∨ (<v6, v6> = <v7, v8> ∈ ℚInterval))
∧ (((v5 = v3 ∈ ℚ) ∧ (v6 = qavg(v3;v4) ∈ ℚ)) ∨ ((v5 = qavg(v3;v4) ∈ ℚ) ∧ (v6 = v4 ∈ ℚ)))
∧ (((v7 = v3 ∈ ℚ) ∧ (v8 = qavg(v3;v4) ∈ ℚ)) ∨ ((v7 = qavg(v3;v4) ∈ ℚ) ∧ (v8 = v4 ∈ ℚ))))
⇒ (<v7, v8> = <v5, v6> ∈ ℚInterval)
BY
{ ((D 0 THENA Auto)
THEN ExRepD
THEN (D -3 THEN Try (D -3))
THEN (EqHD (-3) THENA Auto)
THEN All Reduce
THEN SplitOrHyps
THEN ExRepD
THEN RationalElim ⌜v5⌝⋅
THEN RationalElim ⌜v6⌝⋅
THEN RationalElim ⌜v7⌝⋅
THEN RationalElim ⌜v8⌝⋅
THEN EqCD
THEN Auto) }
1
.....subterm..... T:t
1:n
1. v4 : ℚ
2. v3 : ℚ
3. k : ℕ
4. a : ℚCube(k)
5. b : ℚCube(k)
6. c : ℚCube(k)
7. ∀i:ℕk. (↑Inhabited(a i))
8. 0 < dim(b)
9. ∀i:ℕk. a i ≤ b i
10. ∀i:ℕk. (↑is-half-interval(b i;c i))
11. dim(a) = (dim(b) - 1) ∈ ℤ
12. i : ℕk
13. dim(c i) = 1 ∈ ℤ
14. ∀j:ℕk. ((¬(j = i ∈ ℤ))
⇒ ((a j) = (b j) ∈ ℚInterval))
15. (a i) = [snd((b i))] ∈ ℚInterval
16. (fst((b i))) = qavg(fst((c i));snd((c i))) ∈ ℚ
17. (snd((b i))) = (snd((c i))) ∈ ℚ
18. ∃!d:ℚCube(k). ((↑is-half-cube(k;a;d)) ∧ (∀i:ℕk. d i ≤ c i))
19. b' : ℚCube(k)
20. ∀i:ℕk. (↑is-half-interval(b' i;c i))
21. ∀i:ℕk. a i ≤ b' i
22. x : ℕk
23. x = i ∈ ℤ
24. (c i) = <v3, v4> ∈ ℚInterval
25. (b i) = <qavg(v3;v4), v4> ∈ ℚInterval
26. (b' i) = <v3, v4> ∈ ℚInterval
27. v4 = v4 ∈ ℚ
28. v4 = qavg(v3;v4) ∈ ℚ
⊢ v3 = qavg(v3;v4) ∈ ℚ
Latex:
Latex:
1. k : \mBbbN{}
2. a : \mBbbQ{}Cube(k)
3. b : \mBbbQ{}Cube(k)
4. c : \mBbbQ{}Cube(k)
5. \mforall{}i:\mBbbN{}k. (\muparrow{}Inhabited(a i))
6. 0 < dim(b)
7. \mforall{}i:\mBbbN{}k. a i \mleq{} b i
8. \mforall{}i:\mBbbN{}k. (\muparrow{}is-half-interval(b i;c i))
9. dim(a) = (dim(b) - 1)
10. i : \mBbbN{}k
11. dim(c i) = 1
12. \mforall{}j:\mBbbN{}k. ((\mneg{}(j = i)) {}\mRightarrow{} ((a j) = (b j)))
13. (a i) = [snd((b i))]
14. (fst((b i))) = qavg(fst((c i));snd((c i)))
15. (snd((b i))) = (snd((c i)))
16. \mexists{}!d:\mBbbQ{}Cube(k). ((\muparrow{}is-half-cube(k;a;d)) \mwedge{} (\mforall{}i:\mBbbN{}k. d i \mleq{} c i))
17. b' : \mBbbQ{}Cube(k)
18. \mforall{}i:\mBbbN{}k. (\muparrow{}is-half-interval(b' i;c i))
19. \mforall{}i:\mBbbN{}k. a i \mleq{} b' i
20. x : \mBbbN{}k
21. x = i
22. v3 : \mBbbQ{}
23. v4 : \mBbbQ{}
24. (c i) = <v3, v4>
25. v5 : \mBbbQ{}
26. v6 : \mBbbQ{}
27. (b i) = <v5, v6>
28. v7 : \mBbbQ{}
29. v8 : \mBbbQ{}
30. (b' i) = <v7, v8>
\mvdash{} (((<v6, v6> = <v7, v7>) \mvee{} (<v6, v6> = <v8, v8>) \mvee{} (<v6, v6> = <v7, v8>))
\mwedge{} (((v5 = v3) \mwedge{} (v6 = qavg(v3;v4))) \mvee{} ((v5 = qavg(v3;v4)) \mwedge{} (v6 = v4)))
\mwedge{} (((v7 = v3) \mwedge{} (v8 = qavg(v3;v4))) \mvee{} ((v7 = qavg(v3;v4)) \mwedge{} (v8 = v4))))
{}\mRightarrow{} (<v7, v8> = <v5, v6>)
By
Latex:
((D 0 THENA Auto)
THEN ExRepD
THEN (D -3 THEN Try (D -3))
THEN (EqHD (-3) THENA Auto)
THEN All Reduce
THEN SplitOrHyps
THEN ExRepD
THEN RationalElim \mkleeneopen{}v5\mkleeneclose{}\mcdot{}
THEN RationalElim \mkleeneopen{}v6\mkleeneclose{}\mcdot{}
THEN RationalElim \mkleeneopen{}v7\mkleeneclose{}\mcdot{}
THEN RationalElim \mkleeneopen{}v8\mkleeneclose{}\mcdot{}
THEN EqCD
THEN Auto)
Home
Index