Step
*
of Lemma
length-rat-complex-boundary-even
No Annotations
∀k,n:ℕ. ∀K:n-dim-complex. (↑isEven(||∂(K)||))
BY
{ (Auto
THEN (CaseNat 0 `n'
THENL [(RWO "rat-complex-boundary-0-dim" 0 THEN Auto)
; ((Assert ⌜∀m:ℕ. ∀K:n-dim-complex. (||K|| < m
⇒ (↑isEven(||∂(K)||)))⌝⋅
THENM (InstHyp [⌜||K|| + 1⌝;⌜K⌝] (-1)⋅ THEN Auto)
)
THEN Thin (-2)
THEN InductionOnNat
THEN Auto
THEN (Assert 0 ≤ ||K|| BY
Auto)
THEN Auto)]
)
) }
1
1. k : ℕ
2. n : ℕ
3. ¬(n = 0 ∈ ℤ)
4. m : ℤ
5. 0 < m
6. ∀K:n-dim-complex. (||K|| < m - 1
⇒ (↑isEven(||∂(K)||)))
7. K : n-dim-complex
8. ||K|| < m
9. 0 ≤ ||K||
⊢ ↑isEven(||∂(K)||)
Latex:
Latex:
No Annotations
\mforall{}k,n:\mBbbN{}. \mforall{}K:n-dim-complex. (\muparrow{}isEven(||\mpartial{}(K)||))
By
Latex:
(Auto
THEN (CaseNat 0 `n'
THENL [(RWO "rat-complex-boundary-0-dim" 0 THEN Auto)
; ((Assert \mkleeneopen{}\mforall{}m:\mBbbN{}. \mforall{}K:n-dim-complex. (||K|| < m {}\mRightarrow{} (\muparrow{}isEven(||\mpartial{}(K)||)))\mkleeneclose{}\mcdot{}
THENM (InstHyp [\mkleeneopen{}||K|| + 1\mkleeneclose{};\mkleeneopen{}K\mkleeneclose{}] (-1)\mcdot{} THEN Auto)
)
THEN Thin (-2)
THEN InductionOnNat
THEN Auto
THEN (Assert 0 \mleq{} ||K|| BY
Auto)
THEN Auto)]
)
)
Home
Index