Nuprl Lemma : length-rat-complex-boundary-even

k,n:ℕ. ∀K:n-dim-complex.  (↑isEven(||∂(K)||))


Proof




Definitions occuring in Statement :  rat-complex-boundary: (K) rational-cube-complex: n-dim-complex isEven: isEven(n) length: ||as|| nat: assert: b all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) assert: b ifthenelse: if then else fi  isEven: isEven(n) eq_int: (i =z j) modulus: mod n remainder: rem m length: ||as|| list_ind: list_ind nil: [] it: btrue: tt true: True rational-cube-complex: n-dim-complex less_than: a < b squash: T cons: [a b] cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m rat-cube-sub-complex: rat-cube-sub-complex(P;L) rat-complex-boundary: (K) filter: filter(P;l) reduce: reduce(f;k;as) face-complex: face-complex(k;L) remove-repeats: remove-repeats(eq;L) concat: concat(ll) map: map(f;as) l_member: (x ∈ l) select: L[n] nat_plus: + l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k rat-cube-dimension: dim(c) bfalse: ff rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) isl: isl(x) set-equal: set-equal(T;x;y) l_disjoint: l_disjoint(T;l1;l2) bnot: ¬bb
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base rat-complex-boundary-0-dim nat_wf set_subtype_base le_wf nat_properties full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__le intformle_wf int_formula_prop_le_lemma istype-le subtype_rel_self rational-cube-complex_wf intformless_wf int_formula_prop_less_lemma ge_wf istype-less_than assert_witness le_weakening2 length_wf rational-cube_wf list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma length_wf_nat decidable__lt istype-false not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel isEven_wf rat-complex-boundary_wf subtract-1-ge-0 non_neg_length add_nat_wf add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf istype-nat rat-complex-boundary-remove1 rat-cube-sub-complex_wf bnot_wf rceq_wf l_member_wf filter-length-less iff_weakening_uiff assert_wf not_wf assert_of_bnot istype-assert subtract_wf itermSubtract_wf int_term_value_subtract_lemma add_nat_plus nat_plus_properties cons_wf select_wf subtract-add-cancel rat-cube-face_wf rat-cube-dimension_wf lelt_wf member_wf assert-rceq inhabited-rat-cube_wf bool_cases bool_wf bool_subtype_base eqtt_to_assert eqff_to_assert member-rat-cube-faces add-subtract-cancel l_all_iff equal-wf-base equal_wf squash_wf true_wf istype-universe iff_weakening_equal rat-cube-faces_wf subtype_rel_list assert_functionality_wrt_uiff length-rat-cube-faces isEven-2n assert_of_tt no_repeats-rat-cube-faces sq_stable__assert no_repeats_wf list_wf decidable__l_member decidable__equal_rc filter-split-length btrue_wf bfalse_wf set-equal-no_repeats-length filter_wf5 no_repeats_filter istype-true member_filter append_wf no_repeats-append isl_wf assert_elim btrue_neq_bfalse member_append length-append itermMultiply_wf itermMinus_wf int_term_value_mul_lemma int_term_value_minus_lemma even-plus-even
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination sqequalRule applyEquality lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType dependent_set_memberEquality_alt intWeakElimination functionIsTypeImplies imageElimination productElimination promote_hyp hypothesis_subsumption addEquality minusEquality equalityIstype applyLambdaEquality pointwiseFunctionality baseApply closedConclusion baseClosed setIsType productIsType functionIsType unionIsType sqequalBase universeEquality imageMemberEquality inlFormation_alt inrFormation_alt setEquality productEquality multiplyEquality functionExtensionality

Latex:
\mforall{}k,n:\mBbbN{}.  \mforall{}K:n-dim-complex.    (\muparrow{}isEven(||\mpartial{}(K)||))



Date html generated: 2020_05_20-AM-09_22_42
Last ObjectModification: 2019_11_27-AM-11_45_00

Theory : rationals


Home Index