Nuprl Lemma : rat-complex-boundary-0-dim

[k:ℕ]. ∀[K:0-dim-complex].  (∂(K) [])


Proof




Definitions occuring in Statement :  rat-complex-boundary: (K) rational-cube-complex: n-dim-complex nil: [] nat: uall: [x:A]. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  false: False not: ¬A less_than': less_than'(a;b) le: A ≤ B squash: T sq_stable: SqStable(P) and: P ∧ Q implies:  Q prop: uimplies: supposing a so_apply: x[s] nat: int_seg: {i..j-} subtype_rel: A ⊆B so_lambda: λ2x.t[x] rational-cube-complex: n-dim-complex member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat istype-le istype-void rational-cube-complex_wf boundary-of-0-dim-is-nil sq_stable__equal l_member_wf int_subtype_base istype-int lelt_wf set_subtype_base rat-cube-dimension_wf equal-wf-base rational-cube_wf sq_stable__l_all
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt voidElimination lambdaFormation_alt independent_pairFormation dependent_set_memberEquality_alt axiomSqEquality imageElimination imageMemberEquality functionIsTypeImplies axiomEquality dependent_functionElimination equalitySymmetry equalityTransitivity inhabitedIsType productElimination because_Cache independent_functionElimination universeIsType setIsType baseClosed independent_isectElimination addEquality natural_numberEquality minusEquality applyEquality intEquality lambdaEquality_alt sqequalRule hypothesis hypothesisEquality isectElimination extract_by_obid rename thin setElimination sqequalHypSubstitution cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:0-dim-complex].    (\mpartial{}(K)  \msim{}  [])



Date html generated: 2019_10_29-AM-07_58_39
Last ObjectModification: 2019_10_22-AM-10_33_48

Theory : rationals


Home Index