Nuprl Lemma : boundary-of-0-dim-is-nil

[k:ℕ]. ∀[K:ℚCube(k) List].  ∂(K) [] supposing (∀c∈K.dim(c) 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  rat-complex-boundary: (K) rat-cube-dimension: dim(c) rational-cube: Cube(k) l_all: (∀x∈L.P[x]) nil: [] list: List nat: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  concat: concat(ll) nequal: a ≠ b ∈  less_than': less_than'(a;b) assert: b bnot: ¬bb sq_type: SQType(T) rat-cube-dimension: dim(c) le: A ≤ B false: False satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  less_than: a < b lelt: i ≤ j < k rational-cube: Cube(k) mapfilter: mapfilter(f;P;L) rat-cube-faces: rat-cube-faces(k;c) rev_implies:  Q guard: {T} true: True squash: T exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A bfalse: ff and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q face-complex: face-complex(k;L) prop: so_apply: x[s] nat: int_seg: {i..j-} subtype_rel: A ⊆B so_lambda: λ2x.t[x] top: Top all: x:A. B[x] rat-cube-sub-complex: rat-cube-sub-complex(P;L) rat-complex-boundary: (K) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  btrue_neq_bfalse member-implies-null-eq-bfalse btrue_wf null_nil_lemma reduce_nil_lemma map_nil_lemma int_term_value_add_lemma itermAdd_wf sum_wf neg_assert_of_eq_int assert-bnot ifthenelse_wf non_neg_sum assert_of_eq_int le_wf istype-false int_seg_subtype_nat Error :isolate_summand2,  bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert int_formula_prop_eq_lemma intformeq_wf member_filter istype-less_than istype-le int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties rat-interval-dimension_wf eq_int_wf upto_wf filter_wf5 int_seg_wf iff_weakening_equal subtype_rel_self istype-universe true_wf squash_wf equal_wf l_all_iff istype-assert member-face-complex nil_wf subtract_wf rat-cube-face_wf subtype_rel_list rat-cube-faces_wf eqtt_to_assert inhabited-rat-cube_wf map_wf concat_wf rc-deq_wf remove-repeats_wf no-member-sq-nil istype-nat list_wf l_member_wf int_subtype_base istype-int lelt_wf set_subtype_base rat-cube-dimension_wf equal-wf-base rational-cube_wf l_all_wf2 istype-void filter_nil_lemma
Rules used in proof :  applyLambdaEquality cumulativity promote_hyp int_eqEquality dependent_pairFormation_alt approximateComputation independent_pairFormation dependent_set_memberEquality_alt imageMemberEquality universeEquality instantiate imageElimination independent_functionElimination sqequalBase equalityIstype productIsType equalitySymmetry equalityTransitivity productEquality setEquality productElimination equalityElimination unionElimination lambdaFormation_alt because_Cache inhabitedIsType isectIsTypeImplies setIsType baseClosed independent_isectElimination addEquality natural_numberEquality minusEquality applyEquality rename setElimination intEquality lambdaEquality_alt hypothesisEquality isectElimination universeIsType axiomSqEquality hypothesis voidElimination isect_memberEquality_alt thin dependent_functionElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:\mBbbQ{}Cube(k)  List].    \mpartial{}(K)  \msim{}  []  supposing  (\mforall{}c\mmember{}K.dim(c)  =  0)



Date html generated: 2019_10_29-AM-07_58_25
Last ObjectModification: 2019_10_19-PM-10_28_06

Theory : rationals


Home Index