Nuprl Lemma : member-face-complex

k:ℕ. ∀K:ℚCube(k) List. ∀f:ℚCube(k).
  ((f ∈ face-complex(k;K)) ⇐⇒ ∃c:ℚCube(k). ((c ∈ K) ∧ (↑Inhabited(c)) ∧ (f ∈ rat-cube-faces(k;c))))


Proof




Definitions occuring in Statement :  face-complex: face-complex(k;L) rat-cube-faces: rat-cube-faces(k;c) inhabited-rat-cube: Inhabited(c) rational-cube: Cube(k) l_member: (x ∈ l) list: List nat: assert: b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  assert: b bnot: ¬bb false: False not: ¬A true: True squash: T cand: c∧ B guard: {T} sq_type: SQType(T) or: P ∨ Q nat: rev_implies:  Q respects-equality: respects-equality(S;T) so_apply: x[s] so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B bfalse: ff uimplies: supposing a uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 prop: uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q face-complex: face-complex(k;L) all: x:A. B[x]
Lemmas referenced :  bool_cases_sqequal ifthenelse_wf btrue_neq_bfalse member-implies-null-eq-bfalse btrue_wf null_nil_lemma le_wf length_wf_nat iff_weakening_equal subtype_rel_self istype-universe true_wf squash_wf assert_of_bnot eqff_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases istype-nat remove-repeats_wf rc-deq_wf member-remove-repeats list_wf concat_wf member-map map_wf member-concat int_subtype_base istype-int lelt_wf set_subtype_base subtype_rel_list inhabited-rat-cube_wf istype-assert respects-equality-set-trivial2 equal-wf-base respects-equality-list subtract_wf rat-cube-dimension_wf equal_wf rat-cube-face_wf nil_wf rat-cube-faces_wf eqtt_to_assert rational-cube_wf l_member_wf
Rules used in proof :  voidElimination applyLambdaEquality hyp_replacement dependent_set_memberEquality_alt baseClosed imageMemberEquality universeEquality imageElimination cumulativity instantiate promote_hyp dependent_pairFormation_alt sqequalBase setIsType addEquality minusEquality independent_functionElimination dependent_functionElimination natural_numberEquality equalitySymmetry equalityTransitivity rename setElimination lambdaEquality_alt applyEquality intEquality productEquality setEquality independent_isectElimination equalityElimination unionElimination inhabitedIsType equalityIstype hypothesis hypothesisEquality isectElimination extract_by_obid introduction universeIsType because_Cache productIsType thin productElimination sqequalHypSubstitution independent_pairFormation sqequalRule cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}K:\mBbbQ{}Cube(k)  List.  \mforall{}f:\mBbbQ{}Cube(k).
    ((f  \mmember{}  face-complex(k;K))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}c:\mBbbQ{}Cube(k).  ((c  \mmember{}  K)  \mwedge{}  (\muparrow{}Inhabited(c))  \mwedge{}  (f  \mmember{}  rat-cube-faces(k;c))))



Date html generated: 2019_10_29-AM-07_57_48
Last ObjectModification: 2019_10_19-PM-10_12_33

Theory : rationals


Home Index