Nuprl Lemma : member-face-complex
∀k:ℕ. ∀K:ℚCube(k) List. ∀f:ℚCube(k).
  ((f ∈ face-complex(k;K)) 
⇐⇒ ∃c:ℚCube(k). ((c ∈ K) ∧ (↑Inhabited(c)) ∧ (f ∈ rat-cube-faces(k;c))))
Proof
Definitions occuring in Statement : 
face-complex: face-complex(k;L)
, 
rat-cube-faces: rat-cube-faces(k;c)
, 
inhabited-rat-cube: Inhabited(c)
, 
rational-cube: ℚCube(k)
, 
l_member: (x ∈ l)
, 
list: T List
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
assert: ↑b
, 
bnot: ¬bb
, 
false: False
, 
not: ¬A
, 
true: True
, 
squash: ↓T
, 
cand: A c∧ B
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
respects-equality: respects-equality(S;T)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
bfalse: ff
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
face-complex: face-complex(k;L)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
bool_cases_sqequal, 
ifthenelse_wf, 
btrue_neq_bfalse, 
member-implies-null-eq-bfalse, 
btrue_wf, 
null_nil_lemma, 
le_wf, 
length_wf_nat, 
iff_weakening_equal, 
subtype_rel_self, 
istype-universe, 
true_wf, 
squash_wf, 
assert_of_bnot, 
eqff_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
istype-nat, 
remove-repeats_wf, 
rc-deq_wf, 
member-remove-repeats, 
list_wf, 
concat_wf, 
member-map, 
map_wf, 
member-concat, 
int_subtype_base, 
istype-int, 
lelt_wf, 
set_subtype_base, 
subtype_rel_list, 
inhabited-rat-cube_wf, 
istype-assert, 
respects-equality-set-trivial2, 
equal-wf-base, 
respects-equality-list, 
subtract_wf, 
rat-cube-dimension_wf, 
equal_wf, 
rat-cube-face_wf, 
nil_wf, 
rat-cube-faces_wf, 
eqtt_to_assert, 
rational-cube_wf, 
l_member_wf
Rules used in proof : 
voidElimination, 
applyLambdaEquality, 
hyp_replacement, 
dependent_set_memberEquality_alt, 
baseClosed, 
imageMemberEquality, 
universeEquality, 
imageElimination, 
cumulativity, 
instantiate, 
promote_hyp, 
dependent_pairFormation_alt, 
sqequalBase, 
setIsType, 
addEquality, 
minusEquality, 
independent_functionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
rename, 
setElimination, 
lambdaEquality_alt, 
applyEquality, 
intEquality, 
productEquality, 
setEquality, 
independent_isectElimination, 
equalityElimination, 
unionElimination, 
inhabitedIsType, 
equalityIstype, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
universeIsType, 
because_Cache, 
productIsType, 
thin, 
productElimination, 
sqequalHypSubstitution, 
independent_pairFormation, 
sqequalRule, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}K:\mBbbQ{}Cube(k)  List.  \mforall{}f:\mBbbQ{}Cube(k).
    ((f  \mmember{}  face-complex(k;K))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}c:\mBbbQ{}Cube(k).  ((c  \mmember{}  K)  \mwedge{}  (\muparrow{}Inhabited(c))  \mwedge{}  (f  \mmember{}  rat-cube-faces(k;c))))
Date html generated:
2019_10_29-AM-07_57_48
Last ObjectModification:
2019_10_19-PM-10_12_33
Theory : rationals
Home
Index