Nuprl Lemma : length-rat-cube-faces

k:ℕ. ∀c:ℚCube(k).  ((↑Inhabited(c))  (||rat-cube-faces(k;c)|| (2 dim(c)) ∈ ℤ))


Proof




Definitions occuring in Statement :  rat-cube-faces: rat-cube-faces(k;c) rat-cube-dimension: dim(c) inhabited-rat-cube: Inhabited(c) rational-cube: Cube(k) length: ||as|| nat: assert: b all: x:A. B[x] implies:  Q multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rat-cube-faces: rat-cube-faces(k;c) mapfilter: mapfilter(f;P;L) member: t ∈ T squash: T uall: [x:A]. B[x] prop: nat: subtype_rel: A ⊆B uimplies: supposing a top: Top int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b rational-cube: Cube(k) true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q compose: g lsum: Σ(f[x] x ∈ L) ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False so_lambda: λ2x.t[x] so_apply: x[s] rat-cube-dimension: dim(c) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe length-concat map_wf int_seg_wf list_wf top_wf cons_wf rational-cube_wf lower-rc-face_wf upper-rc-face_wf nil_wf subtype_rel_list istype-void filter_wf5 upto_wf l_member_wf eq_int_wf rat-interval-dimension_wf rat-cube-dimension_wf subtype_rel_self iff_weakening_equal map-map length_of_cons_lemma length_of_nil_lemma istype-assert inhabited-rat-cube_wf istype-nat lsum-constant int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than length-filter-lsum lsum-upto ifthenelse_wf sum_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal-wf-T-base assert_wf bnot_wf not_wf uiff_transitivity assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType inhabitedIsType instantiate universeEquality intEquality closedConclusion natural_numberEquality setElimination rename because_Cache independent_isectElimination isect_memberEquality_alt voidElimination sqequalRule productElimination setIsType multiplyEquality imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination dependent_set_memberEquality_alt independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality productIsType equalityElimination equalityIstype promote_hyp cumulativity applyLambdaEquality

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).    ((\muparrow{}Inhabited(c))  {}\mRightarrow{}  (||rat-cube-faces(k;c)||  =  (2  *  dim(c))))



Date html generated: 2020_05_20-AM-09_21_59
Last ObjectModification: 2019_11_27-AM-10_16_35

Theory : rationals


Home Index