Nuprl Lemma : lsum-upto
∀[k:ℕ]. ∀[f:ℕk ⟶ ℤ].  (Σ(f[x] | x ∈ upto(k)) = Σ(f[x] | x < k) ∈ ℤ)
Proof
Definitions occuring in Statement : 
lsum: Σ(f[x] | x ∈ L)
, 
upto: upto(n)
, 
sum: Σ(f[x] | x < k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
upto: upto(n)
, 
from-upto: [n, m)
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
bfalse: ff
, 
sum: Σ(f[x] | x < k)
, 
sum_aux: sum_aux(k;v;i;x.f[x])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
true: True
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
less_than': less_than'(a;b)
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
lsum_nil_lemma, 
int_seg_wf, 
subtract-1-ge-0, 
istype-nat, 
upto_decomp1, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
lsum-append, 
upto_wf, 
subtract_wf, 
subtype_rel_list, 
cons_wf, 
nil_wf, 
l_member_wf, 
append_wf, 
member_append, 
from-upto-member, 
member_singleton, 
decidable__le, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
istype-le, 
sum_wf, 
subtype_rel_self, 
iff_weakening_equal, 
lsum_wf, 
int_seg_properties, 
add_functionality_wrt_eq, 
sum-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
lsum_cons_lemma, 
istype-top, 
decidable__equal_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
because_Cache, 
functionIsType, 
dependent_set_memberEquality_alt, 
unionElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
intEquality, 
productElimination, 
productIsType, 
setIsType, 
imageMemberEquality, 
baseClosed, 
closedConclusion, 
equalityElimination, 
lessCases, 
axiomSqEquality, 
equalityIstype, 
promote_hyp, 
cumulativity
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(f[x]  |  x  \mmember{}  upto(k))  =  \mSigma{}(f[x]  |  x  <  k))
Date html generated:
2020_05_19-PM-09_47_52
Last ObjectModification:
2019_11_27-AM-10_12_19
Theory : list_1
Home
Index