Nuprl Lemma : lsum-upto

[k:ℕ]. ∀[f:ℕk ⟶ ℤ].  (f[x] x ∈ upto(k)) = Σ(f[x] x < k) ∈ ℤ)


Proof




Definitions occuring in Statement :  lsum: Σ(f[x] x ∈ L) upto: upto(n) sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + decidable: Dec(P) or: P ∨ Q squash: T subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k iff: ⇐⇒ Q uiff: uiff(P;Q) true: True guard: {T} rev_implies:  Q le: A ≤ B less_than: a < b bool: 𝔹 unit: Unit it: btrue: tt less_than': less_than'(a;b) sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than lsum_nil_lemma int_seg_wf subtract-1-ge-0 istype-nat upto_decomp1 decidable__lt intformnot_wf int_formula_prop_not_lemma equal_wf squash_wf true_wf istype-universe lsum-append upto_wf subtract_wf subtype_rel_list cons_wf nil_wf l_member_wf append_wf member_append from-upto-member member_singleton decidable__le intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma istype-le sum_wf subtype_rel_self iff_weakening_equal lsum_wf int_seg_properties add_functionality_wrt_eq sum-unroll lt_int_wf eqtt_to_assert assert_of_lt_int lsum_cons_lemma istype-top decidable__equal_int itermAdd_wf int_term_value_add_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies because_Cache functionIsType dependent_set_memberEquality_alt unionElimination applyEquality imageElimination equalityTransitivity equalitySymmetry instantiate universeEquality intEquality productElimination productIsType setIsType imageMemberEquality baseClosed closedConclusion equalityElimination lessCases axiomSqEquality equalityIstype promote_hyp cumulativity

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(f[x]  |  x  \mmember{}  upto(k))  =  \mSigma{}(f[x]  |  x  <  k))



Date html generated: 2020_05_19-PM-09_47_52
Last ObjectModification: 2019_11_27-AM-10_12_19

Theory : list_1


Home Index