Nuprl Lemma : lsum_wf

[T:Type]. ∀[L:T List]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ].  (f[x] x ∈ L) ∈ ℤ)


Proof




Definitions occuring in Statement :  lsum: Σ(f[x] x ∈ L) l_member: (x ∈ l) list: List uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] lsum: Σ(f[x] x ∈ L) member: t ∈ T prop: so_apply: x[s]
Lemmas referenced :  list-subtype l_sum_wf map_wf l_member_wf istype-int list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setEquality intEquality lambdaEquality_alt applyEquality setIsType universeIsType functionIsType instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(f[x]  |  x  \mmember{}  L)  \mmember{}  \mBbbZ{})



Date html generated: 2020_05_19-PM-09_46_35
Last ObjectModification: 2019_11_12-PM-11_12_32

Theory : list_1


Home Index