Nuprl Lemma : lsum_wf
∀[T:Type]. ∀[L:T List]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ].  (Σ(f[x] | x ∈ L) ∈ ℤ)
Proof
Definitions occuring in Statement : 
lsum: Σ(f[x] | x ∈ L)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
lsum: Σ(f[x] | x ∈ L)
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
list-subtype, 
l_sum_wf, 
map_wf, 
l_member_wf, 
istype-int, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setEquality, 
intEquality, 
lambdaEquality_alt, 
applyEquality, 
setIsType, 
universeIsType, 
functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(f[x]  |  x  \mmember{}  L)  \mmember{}  \mBbbZ{})
Date html generated:
2020_05_19-PM-09_46_35
Last ObjectModification:
2019_11_12-PM-11_12_32
Theory : list_1
Home
Index