Nuprl Lemma : length-concat

[ll:Top List List]. (||concat(ll)|| l_sum(map(λl.||l||;ll)) ∈ ℤ)


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) length: ||as|| concat: concat(ll) map: map(f;as) list: List uall: [x:A]. B[x] top: Top lambda: λx.A[x] int: equal: t ∈ T
Definitions unfolded in proof :  l_sum: l_sum(L) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] nat: so_apply: x[s] implies:  Q concat: concat(ll) all: x:A. B[x] top: Top uimplies: supposing a sq_type: SQType(T) guard: {T} prop:
Lemmas referenced :  list_induction list_wf top_wf equal_wf length_wf concat_wf reduce_wf nat_wf map_wf length_wf_nat reduce_nil_lemma map_nil_lemma length_of_nil_lemma map_cons_lemma reduce_cons_lemma subtype_base_sq int_subtype_base concat-cons length-append
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesis lambdaEquality intEquality hypothesisEquality addEquality setElimination rename natural_numberEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}[ll:Top  List  List].  (||concat(ll)||  =  l\_sum(map(\mlambda{}l.||l||;ll)))



Date html generated: 2016_05_14-PM-02_54_34
Last ObjectModification: 2015_12_26-PM-02_32_03

Theory : list_1


Home Index