Nuprl Lemma : no_repeats-rat-cube-faces

k:ℕ. ∀c:ℚCube(k).  no_repeats(ℚCube(k);rat-cube-faces(k;c))


Proof




Definitions occuring in Statement :  rat-cube-faces: rat-cube-faces(k;c) rational-cube: Cube(k) no_repeats: no_repeats(T;l) nat: all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] rat-cube-faces: rat-cube-faces(k;c) mapfilter: mapfilter(f;P;L) uall: [x:A]. B[x] member: t ∈ T nat: rational-cube: Cube(k) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q rev_implies:  Q l_disjoint: l_disjoint(T;l1;l2) cand: c∧ B uiff: uiff(P;Q) rational-interval: Interval pi2: snd(t) lower-rc-face: lower-rc-face(c;j) bool: 𝔹 unit: Unit it: btrue: tt sq_type: SQType(T) guard: {T} bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  rat-point-interval: [a] rat-interval-dimension: dim(I) pi1: fst(t) true: True upper-rc-face: upper-rc-face(c;j) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  no_repeats-concat map_wf int_seg_wf list_wf rational-cube_wf cons_wf lower-rc-face_wf upper-rc-face_wf nil_wf filter_wf5 upto_wf eq_int_wf rat-interval-dimension_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than l_member_wf istype-nat pairwise-map l_disjoint_wf pairwise-iff2 no_repeats_filter no_repeats_upto member_filter_2 assert_of_eq_int not_wf cons_member l_disjoint_nil2 iff_transitivity iff_weakening_uiff l_disjoint_cons eqtt_to_assert intformeq_wf int_formula_prop_eq_lemma subtype_base_sq int_subtype_base eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int q_less_wf equal-wf-T-base assert_wf qless_wf qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity bnot_wf istype-assert uiff_transitivity2 assert-q_less-eq assert_of_bnot iff_weakening_equal member_singleton l_all_iff no_repeats_wf member_map squash_wf true_wf istype-universe subtype_rel_self no_repeats_cons no_repeats_singleton length_wf length_of_cons_lemma length_of_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality_alt universeIsType applyEquality dependent_set_memberEquality_alt productElimination imageElimination independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule productIsType inhabitedIsType equalityTransitivity equalitySymmetry setIsType instantiate cumulativity functionIsType equalityIstype productEquality promote_hyp applyLambdaEquality equalityElimination intEquality baseClosed sqequalBase universeEquality imageMemberEquality

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).    no\_repeats(\mBbbQ{}Cube(k);rat-cube-faces(k;c))



Date html generated: 2020_05_20-AM-09_22_08
Last ObjectModification: 2019_11_27-AM-10_48_43

Theory : rationals


Home Index