Nuprl Lemma : l_disjoint_nil2
∀[A:Type]. ∀[L:A List].  l_disjoint(A;L;[])
Proof
Definitions occuring in Statement : 
l_disjoint: l_disjoint(T;l1;l2)
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
l_disjoint: l_disjoint(T;l1;l2)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
and_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
productElimination, 
lemma_by_obid, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].    l\_disjoint(A;L;[])
Date html generated:
2016_05_14-AM-07_55_59
Last ObjectModification:
2015_12_26-PM-04_49_59
Theory : list_1
Home
Index