Nuprl Lemma : l_disjoint_nil2

[A:Type]. ∀[L:A List].  l_disjoint(A;L;[])


Proof




Definitions occuring in Statement :  l_disjoint: l_disjoint(T;l1;l2) nil: [] list: List uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  l_disjoint: l_disjoint(T;l1;l2) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] not: ¬A implies:  Q false: False and: P ∧ Q uimplies: supposing a prop:
Lemmas referenced :  null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse and_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution productElimination lemma_by_obid hypothesis isectElimination hypothesisEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination lambdaEquality dependent_functionElimination because_Cache isect_memberEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].    l\_disjoint(A;L;[])



Date html generated: 2016_05_14-AM-07_55_59
Last ObjectModification: 2015_12_26-PM-04_49_59

Theory : list_1


Home Index