Nuprl Lemma : pairwise-iff2

[T:Type]
  ∀L:T List
    ∀[P:T ⟶ T ⟶ ℙ']
      ((∀x,y:T.  (P[x;y]  P[y;x]))
       no_repeats(T;L)
       ((∀x,y∈L.  P[x;y]) ⇐⇒ ∀x,y:T.  ((x ∈ L)  (y ∈ L)  (x y ∈ T))  P[x;y])))


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A member: t ∈ T false: False prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q subtype_rel: A ⊆B or: P ∨ Q guard: {T} pairwise: (∀x,y∈L.  P[x; y]) int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top no_repeats: no_repeats(T;l) less_than': less_than'(a;b) nat: ge: i ≥  so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  istype-void l_member_wf pairwise_wf2 subtype_rel_self no_repeats_wf list_wf istype-universe pairwise-implies select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt length_wf intformless_wf int_formula_prop_less_lemma select_member istype-le istype-less_than int_seg_subtype_nat istype-false nat_properties intformeq_wf int_formula_prop_eq_lemma istype-nat set_subtype_base lelt_wf int_subtype_base int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt independent_pairFormation sqequalRule functionIsType equalityIstype inhabitedIsType hypothesisEquality hypothesis cut introduction extract_by_obid universeIsType sqequalHypSubstitution isectElimination thin instantiate cumulativity lambdaEquality_alt applyEquality because_Cache universeEquality dependent_functionElimination independent_functionElimination unionElimination voidElimination setElimination rename independent_isectElimination productElimination imageElimination natural_numberEquality approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt dependent_set_memberEquality_alt productIsType equalityTransitivity equalitySymmetry applyLambdaEquality intEquality sqequalBase

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}']
            ((\mforall{}x,y:T.    (P[x;y]  {}\mRightarrow{}  P[y;x]))
            {}\mRightarrow{}  no\_repeats(T;L)
            {}\mRightarrow{}  ((\mforall{}x,y\mmember{}L.    P[x;y])  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x,y:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  (y  \mmember{}  L)  {}\mRightarrow{}  (\mneg{}(x  =  y))  {}\mRightarrow{}  P[x;y])))



Date html generated: 2020_05_19-PM-09_43_24
Last ObjectModification: 2019_10_21-PM-10_25_04

Theory : list_1


Home Index