Nuprl Lemma : no_repeats-concat
∀[T:Type]. ∀[ll:T List List].
  (no_repeats(T;concat(ll))) supposing ((∀l∈ll.no_repeats(T;l)) and (∀l1,l2∈ll.  l_disjoint(T;l1;l2)))
Proof
Definitions occuring in Statement : 
pairwise: (∀x,y∈L.  P[x; y]), 
l_disjoint: l_disjoint(T;l1;l2), 
l_all: (∀x∈L.P[x]), 
no_repeats: no_repeats(T;l), 
concat: concat(ll), 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
cand: A c∧ B, 
implies: P ⇒ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
no_repeats-concat-iff, 
no_repeats_witness, 
concat_wf, 
l_all_wf, 
list_wf, 
no_repeats_wf, 
l_member_wf, 
pairwise_wf2, 
l_disjoint_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
hypothesis, 
independent_pairFormation, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[ll:T  List  List].
    (no\_repeats(T;concat(ll)))  supposing 
          ((\mforall{}l\mmember{}ll.no\_repeats(T;l))  and 
          (\mforall{}l1,l2\mmember{}ll.    l\_disjoint(T;l1;l2)))
Date html generated:
2016_05_14-PM-02_55_14
Last ObjectModification:
2015_12_26-PM-02_31_32
Theory : list_1
Home
Index