Nuprl Lemma : rat-complex-boundary_wf
∀[k,n:ℕ]. ∀[K:n-dim-complex].  (∂(K) ∈ n - 1-dim-complex)
Proof
Definitions occuring in Statement : 
rat-complex-boundary: ∂(K)
, 
rational-cube-complex: n-dim-complex
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
nat_plus: ℕ+
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
ge: i ≥ j 
, 
rat-complex-boundary: ∂(K)
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
rational-cube-complex: n-dim-complex
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
in-complex-boundary_wf, 
istype-less_than, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
face-complex_wf, 
istype-le, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
subtract_wf, 
rat-cube-sub-complex_wf, 
l_member_wf, 
istype-int, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
equal-wf-base, 
l_all_wf2, 
compatible-rat-cubes_wf, 
pairwise_wf2, 
no_repeats_wf, 
l_all_nil, 
pairwise-nil, 
istype-void, 
no_repeats_nil, 
rational-cube_wf, 
nil_wf, 
boundary-of-0-dim-is-nil, 
istype-nat, 
rational-cube-complex_wf, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int
Rules used in proof : 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
setIsType, 
baseClosed, 
addEquality, 
minusEquality, 
applyEquality, 
lambdaEquality_alt, 
productIsType, 
independent_pairFormation, 
voidElimination, 
dependent_set_memberEquality_alt, 
productElimination, 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
intEquality, 
cumulativity, 
isectElimination, 
instantiate, 
unionElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].    (\mpartial{}(K)  \mmember{}  n  -  1-dim-complex)
Date html generated:
2019_10_29-AM-07_58_32
Last ObjectModification:
2019_10_19-PM-10_31_27
Theory : rationals
Home
Index