Nuprl Lemma : rat-complex-boundary_wf

[k,n:ℕ]. ∀[K:n-dim-complex].  (∂(K) ∈ 1-dim-complex)


Proof




Definitions occuring in Statement :  rat-complex-boundary: (K) rational-cube-complex: n-dim-complex nat: uall: [x:A]. B[x] member: t ∈ T subtract: m natural_number: $n
Definitions unfolded in proof :  nat_plus: + false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  rat-complex-boundary: (K) int_seg: {i..j-} subtype_rel: A ⊆B prop: so_apply: x[s] so_lambda: λ2x.t[x] true: True rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] top: Top cand: c∧ B and: P ∧ Q rational-cube-complex: n-dim-complex guard: {T} implies:  Q sq_type: SQType(T) uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat: all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  in-complex-boundary_wf istype-less_than int_formula_prop_less_lemma intformless_wf decidable__lt face-complex_wf istype-le int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties subtract_wf rat-cube-sub-complex_wf l_member_wf istype-int lelt_wf set_subtype_base rat-cube-dimension_wf equal-wf-base l_all_wf2 compatible-rat-cubes_wf pairwise_wf2 no_repeats_wf l_all_nil pairwise-nil istype-void no_repeats_nil rational-cube_wf nil_wf boundary-of-0-dim-is-nil istype-nat rational-cube-complex_wf int_subtype_base subtype_base_sq decidable__equal_int
Rules used in proof :  int_eqEquality dependent_pairFormation_alt approximateComputation setIsType baseClosed addEquality minusEquality applyEquality lambdaEquality_alt productIsType independent_pairFormation voidElimination dependent_set_memberEquality_alt productElimination inhabitedIsType isectIsTypeImplies isect_memberEquality_alt universeIsType equalitySymmetry equalityTransitivity axiomEquality sqequalRule independent_functionElimination because_Cache independent_isectElimination intEquality cumulativity isectElimination instantiate unionElimination natural_numberEquality hypothesis hypothesisEquality rename setElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].    (\mpartial{}(K)  \mmember{}  n  -  1-dim-complex)



Date html generated: 2019_10_29-AM-07_58_32
Last ObjectModification: 2019_10_19-PM-10_31_27

Theory : rationals


Home Index