Nuprl Lemma : pairwise-nil

[P:Top]. ((∀x,y∈[].  P[x;y]) ⇐⇒ True)


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) nil: [] uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] iff: ⇐⇒ Q true: True
Definitions unfolded in proof :  pairwise: (∀x,y∈L.  P[x; y]) select: L[n] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True prop: so_lambda: λ2x.t[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A so_apply: x[s] rev_implies:  Q
Lemmas referenced :  top_wf true_wf int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma itermConstant_wf intformle_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties int_seg_wf all_wf base_wf stuck-spread length_of_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin baseClosed independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality isect_memberFormation independent_pairFormation natural_numberEquality because_Cache lambdaEquality setElimination rename hypothesisEquality productElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination computeAll

Latex:
\mforall{}[P:Top].  ((\mforall{}x,y\mmember{}[].    P[x;y])  \mLeftarrow{}{}\mRightarrow{}  True)



Date html generated: 2016_05_14-PM-01_49_31
Last ObjectModification: 2016_01_15-AM-08_16_46

Theory : list_1


Home Index