Nuprl Lemma : face-complex_wf

[k:ℕ]. ∀[n:ℕ+]. ∀[K:n-dim-complex].  (face-complex(k;K) ∈ 1-dim-complex)


Proof




Definitions occuring in Statement :  face-complex: face-complex(k;L) rational-cube-complex: n-dim-complex nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T subtract: m natural_number: $n
Definitions unfolded in proof :  true: True l_member: (x ∈ l) guard: {T} squash: T sq_stable: SqStable(P) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  nat_plus: + so_apply: x[s] nat: int_seg: {i..j-} so_lambda: λ2x.t[x] exists: x:A. B[x] rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s1;s2] prop: so_lambda: λ2y.t[x; y] cand: c∧ B rational-cube-complex: n-dim-complex bfalse: ff subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] face-complex: face-complex(k;L) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  select_wf iff_weakening_equal subtype_rel_self istype-universe true_wf squash_wf equal_wf subtract_wf rat-cube-face_wf subtype_rel_list faces-of-compatible-rat-cubes sq_stable__compatible-rat-cubes member-rat-cube-faces istype-nat nat_plus_wf istype-le int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties nat_plus_properties rational-cube-complex_wf l_all_wf2 pairwise_wf2 no_repeats_wf less_than_wf int_subtype_base istype-int lelt_wf set_subtype_base rat-cube-dimension_wf equal-wf-base l_all_iff l_member_wf member-face-complex compatible-rat-cubes-refl compatible-rat-cubes-symm compatible-rat-cubes_wf Error :pairwise-iff,  remove-repeats-no_repeats rational-cube_wf nil_wf rat-cube-faces_wf eqtt_to_assert map_wf concat_wf rc-deq_wf remove-repeats_wf
Rules used in proof :  universeEquality sqequalBase productEquality setEquality imageElimination imageMemberEquality isectIsTypeImplies voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation axiomEquality productIsType setIsType baseClosed closedConclusion baseApply addEquality natural_numberEquality minusEquality rename setElimination intEquality cumulativity instantiate independent_pairFormation dependent_set_memberEquality_alt universeIsType independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity equalityIstype hypothesisEquality applyEquality independent_isectElimination productElimination equalityElimination unionElimination lambdaFormation_alt inhabitedIsType lambdaEquality_alt hypothesis because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[K:n-dim-complex].    (face-complex(k;K)  \mmember{}  n  -  1-dim-complex)



Date html generated: 2019_10_29-AM-07_57_55
Last ObjectModification: 2019_10_19-AM-02_14_30

Theory : rationals


Home Index