Nuprl Lemma : face-complex_wf
∀[k:ℕ]. ∀[n:ℕ+]. ∀[K:n-dim-complex].  (face-complex(k;K) ∈ n - 1-dim-complex)
Proof
Definitions occuring in Statement : 
face-complex: face-complex(k;L)
, 
rational-cube-complex: n-dim-complex
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
true: True
, 
l_member: (x ∈ l)
, 
guard: {T}
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
cand: A c∧ B
, 
rational-cube-complex: n-dim-complex
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
face-complex: face-complex(k;L)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
select_wf, 
iff_weakening_equal, 
subtype_rel_self, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
subtract_wf, 
rat-cube-face_wf, 
subtype_rel_list, 
faces-of-compatible-rat-cubes, 
sq_stable__compatible-rat-cubes, 
member-rat-cube-faces, 
istype-nat, 
nat_plus_wf, 
istype-le, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
nat_plus_properties, 
rational-cube-complex_wf, 
l_all_wf2, 
pairwise_wf2, 
no_repeats_wf, 
less_than_wf, 
int_subtype_base, 
istype-int, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
equal-wf-base, 
l_all_iff, 
l_member_wf, 
member-face-complex, 
compatible-rat-cubes-refl, 
compatible-rat-cubes-symm, 
compatible-rat-cubes_wf, 
Error :pairwise-iff, 
remove-repeats-no_repeats, 
rational-cube_wf, 
nil_wf, 
rat-cube-faces_wf, 
eqtt_to_assert, 
map_wf, 
concat_wf, 
rc-deq_wf, 
remove-repeats_wf
Rules used in proof : 
universeEquality, 
sqequalBase, 
productEquality, 
setEquality, 
imageElimination, 
imageMemberEquality, 
isectIsTypeImplies, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
axiomEquality, 
productIsType, 
setIsType, 
baseClosed, 
closedConclusion, 
baseApply, 
addEquality, 
natural_numberEquality, 
minusEquality, 
rename, 
setElimination, 
intEquality, 
cumulativity, 
instantiate, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
universeIsType, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
productElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
lambdaEquality_alt, 
hypothesis, 
because_Cache, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[K:n-dim-complex].    (face-complex(k;K)  \mmember{}  n  -  1-dim-complex)
Date html generated:
2019_10_29-AM-07_57_55
Last ObjectModification:
2019_10_19-AM-02_14_30
Theory : rationals
Home
Index