Nuprl Lemma : compatible-rat-cubes-refl

[k:ℕ]. ∀[c:ℚCube(k)].  ∀d:ℚCube(k). ((c d ∈ ℚCube(k))  Compatible(d;c))


Proof




Definitions occuring in Statement :  compatible-rat-cubes: Compatible(c;d) rational-cube: Cube(k) nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B squash: T true: True member: t ∈ T prop: cand: c∧ B and: P ∧ Q compatible-rat-cubes: Compatible(c;d) implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  subtype_rel_self true_wf squash_wf rat-cube-face-self iff_weakening_equal rat-cube-intersection-idemp istype-nat rational-cube_wf inhabited-rat-cube_wf istype-assert rat-cube-intersection_wf rat-cube-face_wf
Rules used in proof :  universeEquality instantiate dependent_functionElimination independent_functionElimination independent_isectElimination baseClosed imageMemberEquality because_Cache imageElimination lambdaEquality_alt applyEquality natural_numberEquality universeIsType isectElimination extract_by_obid introduction productElimination sqequalHypSubstitution rename setElimination applyLambdaEquality hypothesisEquality inhabitedIsType equalityIstype productIsType equalityTransitivity dependent_set_memberEquality_alt sqequalRule equalitySymmetry thin hyp_replacement hypothesis independent_pairFormation cut lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    \mforall{}d:\mBbbQ{}Cube(k).  ((c  =  d)  {}\mRightarrow{}  Compatible(d;c))



Date html generated: 2019_10_29-AM-07_54_21
Last ObjectModification: 2019_10_18-PM-01_04_17

Theory : rationals


Home Index