Nuprl Lemma : compatible-rat-cubes-refl
∀[k:ℕ]. ∀[c:ℚCube(k)].  ∀d:ℚCube(k). ((c = d ∈ ℚCube(k)) 
⇒ Compatible(d;c))
Proof
Definitions occuring in Statement : 
compatible-rat-cubes: Compatible(c;d)
, 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
prop: ℙ
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
compatible-rat-cubes: Compatible(c;d)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
subtype_rel_self, 
true_wf, 
squash_wf, 
rat-cube-face-self, 
iff_weakening_equal, 
rat-cube-intersection-idemp, 
istype-nat, 
rational-cube_wf, 
inhabited-rat-cube_wf, 
istype-assert, 
rat-cube-intersection_wf, 
rat-cube-face_wf
Rules used in proof : 
universeEquality, 
instantiate, 
dependent_functionElimination, 
independent_functionElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
because_Cache, 
imageElimination, 
lambdaEquality_alt, 
applyEquality, 
natural_numberEquality, 
universeIsType, 
isectElimination, 
extract_by_obid, 
introduction, 
productElimination, 
sqequalHypSubstitution, 
rename, 
setElimination, 
applyLambdaEquality, 
hypothesisEquality, 
inhabitedIsType, 
equalityIstype, 
productIsType, 
equalityTransitivity, 
dependent_set_memberEquality_alt, 
sqequalRule, 
equalitySymmetry, 
thin, 
hyp_replacement, 
hypothesis, 
independent_pairFormation, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    \mforall{}d:\mBbbQ{}Cube(k).  ((c  =  d)  {}\mRightarrow{}  Compatible(d;c))
Date html generated:
2019_10_29-AM-07_54_21
Last ObjectModification:
2019_10_18-PM-01_04_17
Theory : rationals
Home
Index