Nuprl Lemma : rat-cube-intersection-idemp
∀[k:ℕ]. ∀[c:ℚCube(k)].  (c ⋂ c = c ∈ ℚCube(k))
Proof
Definitions occuring in Statement : 
rat-cube-intersection: c ⋂ d
, 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
nat: ℕ
, 
rat-cube-intersection: c ⋂ d
, 
rational-cube: ℚCube(k)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
int_seg_wf, 
rat-interval-intersection-idemp
Rules used in proof : 
inhabitedIsType, 
isectIsTypeImplies, 
axiomEquality, 
isect_memberEquality_alt, 
universeIsType, 
rename, 
setElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
functionExtensionality, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    (c  \mcap{}  c  =  c)
Date html generated:
2019_10_29-AM-07_51_24
Last ObjectModification:
2019_10_18-PM-00_59_18
Theory : rationals
Home
Index