Nuprl Lemma : rat-interval-intersection-idemp

[I:ℚInterval]. (I ⋂ I ∈ ℚInterval)


Proof




Definitions occuring in Statement :  rat-interval-intersection: I ⋂ J rational-interval: Interval uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T rat-interval-intersection: I ⋂ J rational-interval: Interval uall: [x:A]. B[x]
Lemmas referenced :  rational-interval_wf subtype_rel_self qmin-idempotent qmax-idempotent
Rules used in proof :  universeIsType because_Cache applyEquality hypothesis hypothesisEquality isectElimination extract_by_obid introduction independent_pairEquality sqequalRule thin productElimination sqequalHypSubstitution cut isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:\mBbbQ{}Interval].  (I  \mcap{}  I  =  I)



Date html generated: 2019_10_29-AM-07_48_32
Last ObjectModification: 2019_10_18-PM-00_57_04

Theory : rationals


Home Index