Nuprl Lemma : rat-interval-intersection-idemp
∀[I:ℚInterval]. (I ⋂ I = I ∈ ℚInterval)
Proof
Definitions occuring in Statement : 
rat-interval-intersection: I ⋂ J
, 
rational-interval: ℚInterval
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
rat-interval-intersection: I ⋂ J
, 
rational-interval: ℚInterval
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rational-interval_wf, 
subtype_rel_self, 
qmin-idempotent, 
qmax-idempotent
Rules used in proof : 
universeIsType, 
because_Cache, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
independent_pairEquality, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I:\mBbbQ{}Interval].  (I  \mcap{}  I  =  I)
Date html generated:
2019_10_29-AM-07_48_32
Last ObjectModification:
2019_10_18-PM-00_57_04
Theory : rationals
Home
Index