Nuprl Lemma : qmax-idempotent

[q:ℚ]. (qmax(q;q) q ∈ ℚ)


Proof




Definitions occuring in Statement :  qmax: qmax(x;y) rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] qmax: qmax(x;y) member: t ∈ T true: True all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff squash: T prop:
Lemmas referenced :  rationals_wf q_le_wf bool_wf equal-wf-T-base assert_wf qle_wf bnot_wf not_wf uiff_transitivity2 eqtt_to_assert assert-q_le-eq uiff_transitivity eqff_to_assert assert_of_bnot squash_wf true_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality equalityTransitivity equalitySymmetry baseClosed because_Cache natural_numberEquality lambdaFormation unionElimination equalityElimination independent_functionElimination productElimination independent_isectElimination sqequalRule applyEquality lambdaEquality imageElimination universeEquality imageMemberEquality dependent_functionElimination

Latex:
\mforall{}[q:\mBbbQ{}].  (qmax(q;q)  =  q)



Date html generated: 2018_05_21-PM-11_57_27
Last ObjectModification: 2017_07_26-PM-06_47_36

Theory : rationals


Home Index