Nuprl Lemma : rat-cube-face-self

[k:ℕ]. ∀c:ℚCube(k). c ≤ c


Proof




Definitions occuring in Statement :  rat-cube-face: c ≤ d rational-cube: Cube(k) nat: uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  nat: rational-cube: Cube(k) member: t ∈ T rat-cube-face: c ≤ d all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf int_seg_wf rat-interval-face-self
Rules used in proof :  rename setElimination natural_numberEquality isectElimination universeIsType hypothesis hypothesisEquality applyEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}c:\mBbbQ{}Cube(k).  c  \mleq{}  c



Date html generated: 2019_10_29-AM-07_49_39
Last ObjectModification: 2019_10_18-PM-01_03_33

Theory : rationals


Home Index