Nuprl Lemma : rat-cube-face-self
∀[k:ℕ]. ∀c:ℚCube(k). c ≤ c
Proof
Definitions occuring in Statement : 
rat-cube-face: c ≤ d
, 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
nat: ℕ
, 
rational-cube: ℚCube(k)
, 
member: t ∈ T
, 
rat-cube-face: c ≤ d
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
int_seg_wf, 
rat-interval-face-self
Rules used in proof : 
rename, 
setElimination, 
natural_numberEquality, 
isectElimination, 
universeIsType, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}c:\mBbbQ{}Cube(k).  c  \mleq{}  c
Date html generated:
2019_10_29-AM-07_49_39
Last ObjectModification:
2019_10_18-PM-01_03_33
Theory : rationals
Home
Index