Nuprl Lemma : rat-cube-intersection_wf

[k:ℕ]. ∀[c,d:ℚCube(k)].  (c ⋂ d ∈ ℚCube(k))


Proof




Definitions occuring in Statement :  rat-cube-intersection: c ⋂ d rational-cube: Cube(k) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B nat: rational-cube: Cube(k) rat-cube-intersection: c ⋂ d member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf subtype_rel_self int_seg_wf rat-interval-intersection_wf
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt inhabitedIsType equalitySymmetry equalityTransitivity axiomEquality because_Cache rename setElimination natural_numberEquality universeIsType hypothesis hypothesisEquality applyEquality thin isectElimination sqequalHypSubstitution extract_by_obid lambdaEquality_alt sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c,d:\mBbbQ{}Cube(k)].    (c  \mcap{}  d  \mmember{}  \mBbbQ{}Cube(k))



Date html generated: 2019_10_29-AM-07_51_12
Last ObjectModification: 2019_10_17-PM-01_32_16

Theory : rationals


Home Index