Nuprl Lemma : rat-interval-intersection_wf
∀[I,J:ℚInterval].  (I ⋂ J ∈ ℚInterval)
Proof
Definitions occuring in Statement : 
rat-interval-intersection: I ⋂ J
, 
rational-interval: ℚInterval
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
rational-interval: ℚInterval
, 
rat-interval-intersection: I ⋂ J
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rational-interval_wf, 
qmin_wf, 
qmax_wf
Rules used in proof : 
universeIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
inhabitedIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
spreadEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I,J:\mBbbQ{}Interval].    (I  \mcap{}  J  \mmember{}  \mBbbQ{}Interval)
Date html generated:
2019_10_29-AM-07_48_20
Last ObjectModification:
2019_10_17-PM-01_24_53
Theory : rationals
Home
Index