Nuprl Lemma : qmin_wf
∀[x,y:ℚ].  (qmin(x;y) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qmin: qmin(x;y)
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
qmin: qmin(x;y)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
ifthenelse_wf, 
q_le_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y:\mBbbQ{}].    (qmin(x;y)  \mmember{}  \mBbbQ{})
Date html generated:
2016_05_15-PM-10_43_13
Last ObjectModification:
2015_12_27-PM-07_56_12
Theory : rationals
Home
Index