Nuprl Lemma : compatible-rat-cubes-symm

[k:ℕ]. ∀[c,d:ℚCube(k)].  (Compatible(c;d)  Compatible(d;c))


Proof




Definitions occuring in Statement :  compatible-rat-cubes: Compatible(c;d) rational-cube: Cube(k) nat: uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  subtype_rel: A ⊆B rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True prop: squash: T uimplies: supposing a member: t ∈ T cand: c∧ B and: P ∧ Q compatible-rat-cubes: Compatible(c;d) implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf compatible-rat-cubes_wf iff_weakening_equal subtype_rel_self rat-cube-face_wf rat-cube-intersection-symm true_wf squash_wf assert_functionality_wrt_uiff assert_wf iff_weakening_uiff rat-cube-intersection_wf inhabited-rat-cube_wf istype-assert
Rules used in proof :  inhabitedIsType promote_hyp universeEquality instantiate baseClosed imageMemberEquality sqequalRule natural_numberEquality universeIsType equalitySymmetry equalityTransitivity imageElimination lambdaEquality_alt applyEquality independent_isectElimination because_Cache hypothesisEquality isectElimination extract_by_obid introduction independent_pairFormation productElimination hypothesis thin independent_functionElimination cut sqequalHypSubstitution lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c,d:\mBbbQ{}Cube(k)].    (Compatible(c;d)  {}\mRightarrow{}  Compatible(d;c))



Date html generated: 2019_10_29-AM-07_54_15
Last ObjectModification: 2019_10_18-PM-00_51_27

Theory : rationals


Home Index