Nuprl Lemma : compatible-rat-cubes-symm
∀[k:ℕ]. ∀[c,d:ℚCube(k)]. (Compatible(c;d)
⇒ Compatible(d;c))
Proof
Definitions occuring in Statement :
compatible-rat-cubes: Compatible(c;d)
,
rational-cube: ℚCube(k)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
Definitions unfolded in proof :
subtype_rel: A ⊆r B
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
guard: {T}
,
true: True
,
prop: ℙ
,
squash: ↓T
,
uimplies: b supposing a
,
member: t ∈ T
,
cand: A c∧ B
,
and: P ∧ Q
,
compatible-rat-cubes: Compatible(c;d)
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
istype-nat,
rational-cube_wf,
compatible-rat-cubes_wf,
iff_weakening_equal,
subtype_rel_self,
rat-cube-face_wf,
rat-cube-intersection-symm,
true_wf,
squash_wf,
assert_functionality_wrt_uiff,
assert_wf,
iff_weakening_uiff,
rat-cube-intersection_wf,
inhabited-rat-cube_wf,
istype-assert
Rules used in proof :
inhabitedIsType,
promote_hyp,
universeEquality,
instantiate,
baseClosed,
imageMemberEquality,
sqequalRule,
natural_numberEquality,
universeIsType,
equalitySymmetry,
equalityTransitivity,
imageElimination,
lambdaEquality_alt,
applyEquality,
independent_isectElimination,
because_Cache,
hypothesisEquality,
isectElimination,
extract_by_obid,
introduction,
independent_pairFormation,
productElimination,
hypothesis,
thin,
independent_functionElimination,
cut,
sqequalHypSubstitution,
lambdaFormation_alt,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}]. \mforall{}[c,d:\mBbbQ{}Cube(k)]. (Compatible(c;d) {}\mRightarrow{} Compatible(d;c))
Date html generated:
2019_10_29-AM-07_54_15
Last ObjectModification:
2019_10_18-PM-00_51_27
Theory : rationals
Home
Index