Nuprl Lemma : sq_stable__compatible-rat-cubes

k:ℕ. ∀c,d:ℚCube(k).  SqStable(Compatible(c;d))


Proof




Definitions occuring in Statement :  compatible-rat-cubes: Compatible(c;d) rational-cube: Cube(k) nat: sq_stable: SqStable(P) all: x:A. B[x]
Definitions unfolded in proof :  implies:  Q member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  istype-nat rational-cube_wf decidable__compatible-rat-cubes compatible-rat-cubes_wf sq_stable_from_decidable
Rules used in proof :  universeIsType inhabitedIsType dependent_functionElimination independent_functionElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c,d:\mBbbQ{}Cube(k).    SqStable(Compatible(c;d))



Date html generated: 2019_10_29-AM-07_54_44
Last ObjectModification: 2019_10_17-PM-01_47_10

Theory : rationals


Home Index