Nuprl Lemma : faces-of-compatible-rat-cubes
∀k:ℕ. ∀f,g,c,d:ℚCube(k).  ((↑Inhabited(c)) 
⇒ (↑Inhabited(d)) 
⇒ f ≤ c 
⇒ g ≤ d 
⇒ Compatible(c;d) 
⇒ Compatible(f;g))
Proof
Definitions occuring in Statement : 
compatible-rat-cubes: Compatible(c;d)
, 
inhabited-rat-cube: Inhabited(c)
, 
rat-cube-face: c ≤ d
, 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
label: ...$L... t
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
top: Top
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
or: P ∨ Q
, 
rat-point-interval: [a]
, 
rat-interval-face: I ≤ J
, 
inhabited-rat-interval: Inhabited(I)
, 
rat-interval-intersection: I ⋂ J
, 
rational-interval: ℚInterval
, 
rational-cube: ℚCube(k)
, 
rat-cube-intersection: c ⋂ d
, 
rat-cube-face: c ≤ d
, 
guard: {T}
, 
nat: ℕ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
compatible-rat-cubes: Compatible(c;d)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
top_wf, 
subtype_rel_product, 
istype-top, 
istype-universe, 
equal_wf, 
qle_antisymmetry, 
true_wf, 
squash_wf, 
assert_functionality_wrt_uiff, 
rat-point-interval_wf, 
rat-interval-intersection_wf, 
compatible-rat-intervals-iff, 
q_le_wf, 
rat-interval-face_wf, 
iff_weakening_equal, 
assert-q_le-eq, 
qmax_wf, 
subtype_rel_self, 
rational-interval_wf, 
qle_weakening_eq_qorder, 
qle_transitivity_qorder, 
qmin_ub, 
qle_wf, 
iff_weakening_uiff, 
qmin_wf, 
qmax_lb, 
istype-void, 
pi1_wf_top, 
rationals_wf, 
pi2_wf, 
int_seg_wf, 
assert-inhabited-rat-cube, 
istype-nat, 
rational-cube_wf, 
rat-cube-face_wf, 
compatible-rat-cubes_wf, 
rat-cube-intersection_wf, 
inhabited-rat-cube_wf, 
istype-assert
Rules used in proof : 
universeEquality, 
instantiate, 
dependent_set_memberEquality_alt, 
inlFormation_alt, 
inrFormation_alt, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
spreadEquality, 
productIsType, 
equalityIstype, 
unionIsType, 
promote_hyp, 
independent_pairFormation, 
independent_functionElimination, 
productEquality, 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
voidElimination, 
isect_memberEquality_alt, 
independent_pairEquality, 
lambdaEquality_alt, 
applyLambdaEquality, 
unionElimination, 
applyEquality, 
sqequalRule, 
rename, 
setElimination, 
natural_numberEquality, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
inhabitedIsType, 
universeIsType, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}f,g,c,d:\mBbbQ{}Cube(k).
    ((\muparrow{}Inhabited(c))  {}\mRightarrow{}  (\muparrow{}Inhabited(d))  {}\mRightarrow{}  f  \mleq{}  c  {}\mRightarrow{}  g  \mleq{}  d  {}\mRightarrow{}  Compatible(c;d)  {}\mRightarrow{}  Compatible(f;g))
Date html generated:
2019_10_29-AM-07_54_31
Last ObjectModification:
2019_10_19-AM-02_12_10
Theory : rationals
Home
Index