Nuprl Lemma : faces-of-compatible-rat-cubes

k:ℕ. ∀f,g,c,d:ℚCube(k).  ((↑Inhabited(c))  (↑Inhabited(d))  f ≤  g ≤  Compatible(c;d)  Compatible(f;g))


Proof




Definitions occuring in Statement :  compatible-rat-cubes: Compatible(c;d) inhabited-rat-cube: Inhabited(c) rat-cube-face: c ≤ d rational-cube: Cube(k) nat: assert: b all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  label: ...$L... t true: True squash: T subtype_rel: A ⊆B rev_implies:  Q cand: c∧ B iff: ⇐⇒ Q pi1: fst(t) pi2: snd(t) top: Top so_apply: x[s] so_lambda: λ2x.t[x] or: P ∨ Q rat-point-interval: [a] rat-interval-face: I ≤ J inhabited-rat-interval: Inhabited(I) rat-interval-intersection: I ⋂ J rational-interval: Interval rational-cube: Cube(k) rat-cube-intersection: c ⋂ d rat-cube-face: c ≤ d guard: {T} nat: rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) prop: member: t ∈ T uall: [x:A]. B[x] compatible-rat-cubes: Compatible(c;d) implies:  Q all: x:A. B[x]
Lemmas referenced :  top_wf subtype_rel_product istype-top istype-universe equal_wf qle_antisymmetry true_wf squash_wf assert_functionality_wrt_uiff rat-point-interval_wf rat-interval-intersection_wf compatible-rat-intervals-iff q_le_wf rat-interval-face_wf iff_weakening_equal assert-q_le-eq qmax_wf subtype_rel_self rational-interval_wf qle_weakening_eq_qorder qle_transitivity_qorder qmin_ub qle_wf iff_weakening_uiff qmin_wf qmax_lb istype-void pi1_wf_top rationals_wf pi2_wf int_seg_wf assert-inhabited-rat-cube istype-nat rational-cube_wf rat-cube-face_wf compatible-rat-cubes_wf rat-cube-intersection_wf inhabited-rat-cube_wf istype-assert
Rules used in proof :  universeEquality instantiate dependent_set_memberEquality_alt inlFormation_alt inrFormation_alt baseClosed imageMemberEquality imageElimination spreadEquality productIsType equalityIstype unionIsType promote_hyp independent_pairFormation independent_functionElimination productEquality because_Cache equalitySymmetry equalityTransitivity voidElimination isect_memberEquality_alt independent_pairEquality lambdaEquality_alt applyLambdaEquality unionElimination applyEquality sqequalRule rename setElimination natural_numberEquality dependent_functionElimination independent_isectElimination productElimination inhabitedIsType universeIsType hypothesis hypothesisEquality thin isectElimination extract_by_obid introduction cut sqequalHypSubstitution lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}f,g,c,d:\mBbbQ{}Cube(k).
    ((\muparrow{}Inhabited(c))  {}\mRightarrow{}  (\muparrow{}Inhabited(d))  {}\mRightarrow{}  f  \mleq{}  c  {}\mRightarrow{}  g  \mleq{}  d  {}\mRightarrow{}  Compatible(c;d)  {}\mRightarrow{}  Compatible(f;g))



Date html generated: 2019_10_29-AM-07_54_31
Last ObjectModification: 2019_10_19-AM-02_12_10

Theory : rationals


Home Index