Nuprl Lemma : isEven-2n

n:ℤ(isEven(2 n) tt)


Proof




Definitions occuring in Statement :  isEven: isEven(n) btrue: tt all: x:A. B[x] multiply: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B sq_type: SQType(T) guard: {T}
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert isEven_wf assert-isEven int_subtype_base istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination multiplyEquality natural_numberEquality hypothesisEquality productElimination dependent_functionElimination independent_functionElimination Error :dependent_pairFormation_alt,  Error :equalityIstype,  Error :inhabitedIsType,  sqequalRule baseApply closedConclusion baseClosed applyEquality sqequalBase equalitySymmetry equalityTransitivity

Latex:
\mforall{}n:\mBbbZ{}.  (isEven(2  *  n)  \msim{}  tt)



Date html generated: 2019_06_20-PM-02_24_45
Last ObjectModification: 2019_02_01-AM-11_24_02

Theory : num_thy_1


Home Index