Nuprl Lemma : assert-rceq
∀[k:ℕ]. ∀[a,b:ℚCube(k)]. uiff(↑rceq(k;a;b);a = b ∈ ℚCube(k))
Proof
Definitions occuring in Statement :
rceq: rceq(k;a;b)
,
rational-cube: ℚCube(k)
,
nat: ℕ
,
assert: ↑b
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
rev_uimplies: rev_uimplies(P;Q)
,
eqof: eqof(d)
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
deq: EqDecider(T)
,
uimplies: b supposing a
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
rceq: rceq(k;a;b)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
istype-nat,
rceq_wf,
assert_witness,
rational-cube_wf,
safe-assert-deq,
istype-assert,
rc-deq_wf
Rules used in proof :
equalitySymmetry,
equalityTransitivity,
universeIsType,
isectIsTypeImplies,
axiomEquality,
isect_memberEquality_alt,
independent_pairEquality,
equalityIstype,
because_Cache,
independent_isectElimination,
applyEquality,
independent_functionElimination,
productElimination,
dependent_functionElimination,
rename,
setElimination,
independent_pairFormation,
lambdaFormation_alt,
inhabitedIsType,
hypothesis,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
sqequalRule,
cut,
introduction,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}]. \mforall{}[a,b:\mBbbQ{}Cube(k)]. uiff(\muparrow{}rceq(k;a;b);a = b)
Date html generated:
2019_10_29-AM-07_49_21
Last ObjectModification:
2019_10_28-AM-11_02_00
Theory : rationals
Home
Index