Nuprl Lemma : assert-rceq
∀[k:ℕ]. ∀[a,b:ℚCube(k)].  uiff(↑rceq(k;a;b);a = b ∈ ℚCube(k))
Proof
Definitions occuring in Statement : 
rceq: rceq(k;a;b)
, 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q)
, 
eqof: eqof(d)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rceq: rceq(k;a;b)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rceq_wf, 
assert_witness, 
rational-cube_wf, 
safe-assert-deq, 
istype-assert, 
rc-deq_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
universeIsType, 
isectIsTypeImplies, 
axiomEquality, 
isect_memberEquality_alt, 
independent_pairEquality, 
equalityIstype, 
because_Cache, 
independent_isectElimination, 
applyEquality, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
rename, 
setElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
inhabitedIsType, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a,b:\mBbbQ{}Cube(k)].    uiff(\muparrow{}rceq(k;a;b);a  =  b)
Date html generated:
2019_10_29-AM-07_49_21
Last ObjectModification:
2019_10_28-AM-11_02_00
Theory : rationals
Home
Index