Nuprl Lemma : assert-rceq

[k:ℕ]. ∀[a,b:ℚCube(k)].  uiff(↑rceq(k;a;b);a b ∈ ℚCube(k))


Proof




Definitions occuring in Statement :  rceq: rceq(k;a;b) rational-cube: Cube(k) nat: assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) eqof: eqof(d) rev_implies:  Q iff: ⇐⇒ Q deq: EqDecider(T) uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) implies:  Q all: x:A. B[x] rceq: rceq(k;a;b) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rceq_wf assert_witness rational-cube_wf safe-assert-deq istype-assert rc-deq_wf
Rules used in proof :  equalitySymmetry equalityTransitivity universeIsType isectIsTypeImplies axiomEquality isect_memberEquality_alt independent_pairEquality equalityIstype because_Cache independent_isectElimination applyEquality independent_functionElimination productElimination dependent_functionElimination rename setElimination independent_pairFormation lambdaFormation_alt inhabitedIsType hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a,b:\mBbbQ{}Cube(k)].    uiff(\muparrow{}rceq(k;a;b);a  =  b)



Date html generated: 2019_10_29-AM-07_49_21
Last ObjectModification: 2019_10_28-AM-11_02_00

Theory : rationals


Home Index