Nuprl Lemma : rceq_wf
∀[k:ℕ]. ∀[a,b:ℚCube(k)].  (rceq(k;a;b) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
rceq: rceq(k;a;b)
, 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
deq: EqDecider(T)
, 
subtype_rel: A ⊆r B
, 
rceq: rceq(k;a;b)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
rc-deq_wf
Rules used in proof : 
universeIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
axiomEquality, 
equalitySymmetry, 
equalityTransitivity, 
inhabitedIsType, 
rename, 
setElimination, 
lambdaEquality_alt, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
applyEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a,b:\mBbbQ{}Cube(k)].    (rceq(k;a;b)  \mmember{}  \mBbbB{})
Date html generated:
2019_10_29-AM-07_49_15
Last ObjectModification:
2019_10_28-AM-10_59_46
Theory : rationals
Home
Index