Step * 2 of Lemma q-geometric-series

.....falsecase..... 
1. : ℚ
2. : ℕ
3. ((1 -(a)) * Σ0 ≤ i < n. a ↑ i) (1 -(a ↑ n)) ∈ ℚ
4. ¬(a 1 ∈ ℚ)
⊢ Σ0 ≤ i < n. a ↑ (1 a ↑ n/1 a) ∈ ℚ
BY
(Assert ¬((1 -(a)) 0 ∈ ℚBY
         (ParallelLast THEN (QAdd ⌜-1⌝ (-1))⋅ THEN (QMul ⌜-1⌝ (-1))⋅ THEN Auto)) }

1
1. : ℚ
2. : ℕ
3. ((1 -(a)) * Σ0 ≤ i < n. a ↑ i) (1 -(a ↑ n)) ∈ ℚ
4. ¬(a 1 ∈ ℚ)
5. ¬((1 -(a)) 0 ∈ ℚ)
⊢ Σ0 ≤ i < n. a ↑ (1 a ↑ n/1 a) ∈ ℚ


Latex:


Latex:
.....falsecase..... 
1.  a  :  \mBbbQ{}
2.  n  :  \mBbbN{}
3.  ((1  +  -(a))  *  \mSigma{}0  \mleq{}  i  <  n.  a  \muparrow{}  i)  =  (1  +  -(a  \muparrow{}  n))
4.  \mneg{}(a  =  1)
\mvdash{}  \mSigma{}0  \mleq{}  i  <  n.  a  \muparrow{}  i  =  (1  -  a  \muparrow{}  n/1  -  a)


By


Latex:
(Assert  \mneg{}((1  +  -(a))  =  0)  BY
              (ParallelLast  THEN  (QAdd  \mkleeneopen{}-1\mkleeneclose{}  (-1))\mcdot{}  THEN  (QMul  \mkleeneopen{}-1\mkleeneclose{}  (-1))\mcdot{}  THEN  Auto))




Home Index