Step
*
2
of Lemma
q-geometric-series
.....falsecase.....
1. a : ℚ
2. n : ℕ
3. ((1 + -(a)) * Σ0 ≤ i < n. a ↑ i) = (1 + -(a ↑ n)) ∈ ℚ
4. ¬(a = 1 ∈ ℚ)
⊢ Σ0 ≤ i < n. a ↑ i = (1 - a ↑ n/1 - a) ∈ ℚ
BY
{ (Assert ¬((1 + -(a)) = 0 ∈ ℚ) BY
(ParallelLast THEN (QAdd ⌜-1⌝ (-1))⋅ THEN (QMul ⌜-1⌝ (-1))⋅ THEN Auto)) }
1
1. a : ℚ
2. n : ℕ
3. ((1 + -(a)) * Σ0 ≤ i < n. a ↑ i) = (1 + -(a ↑ n)) ∈ ℚ
4. ¬(a = 1 ∈ ℚ)
5. ¬((1 + -(a)) = 0 ∈ ℚ)
⊢ Σ0 ≤ i < n. a ↑ i = (1 - a ↑ n/1 - a) ∈ ℚ
Latex:
Latex:
.....falsecase.....
1. a : \mBbbQ{}
2. n : \mBbbN{}
3. ((1 + -(a)) * \mSigma{}0 \mleq{} i < n. a \muparrow{} i) = (1 + -(a \muparrow{} n))
4. \mneg{}(a = 1)
\mvdash{} \mSigma{}0 \mleq{} i < n. a \muparrow{} i = (1 - a \muparrow{} n/1 - a)
By
Latex:
(Assert \mneg{}((1 + -(a)) = 0) BY
(ParallelLast THEN (QAdd \mkleeneopen{}-1\mkleeneclose{} (-1))\mcdot{} THEN (QMul \mkleeneopen{}-1\mkleeneclose{} (-1))\mcdot{} THEN Auto))
Home
Index