Nuprl Lemma : q-geometric-series

[a:ℚ]. ∀[n:ℕ].  0 ≤ i < n. a ↑ if qeq(a;1) then else (1 a ↑ n/1 a) fi  ∈ ℚ)


This theorem is one of freek's list of 100 theorems



Proof




Definitions occuring in Statement :  qexp: r ↑ n qsum: Σa ≤ j < b. E[j] qsub: s qdiv: (r/s) rationals: qeq: qeq(r;s) nat: ifthenelse: if then else fi  uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B not: ¬A implies:  Q false: False all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q so_apply: x[s] less_than': less_than'(a;b) le: A ≤ B so_lambda: λ2x.t[x] nat: prop: true: True squash: T guard: {T} qmul: s callbyvalueall: callbyvalueall evalall: evalall(t) qadd: s qsub: s int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  sum_of_geometric_prog_q istype-nat rationals_wf qeq_wf2 int-subtype-rationals equal-wf-T-base bool_wf assert_wf bnot_wf not_wf istype-assert istype-void uiff_transitivity eqtt_to_assert assert-qeq iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot le_wf subtype_rel_set int_seg_wf false_wf int_seg_subtype_nat qexp_wf qsum_wf equal_wf squash_wf true_wf qexp-one iff_weakening_equal qmul_one_qrng qsum-const qadd_wf qmul_wf qinv_inv_q istype-universe mon_ident_q subtype_rel_self qadd_assoc int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le qdiv_wf qmul-preserves-eq qmul-qdiv-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType universeIsType because_Cache applyEquality baseClosed equalityIstype equalityTransitivity equalitySymmetry natural_numberEquality functionIsType lambdaFormation_alt unionElimination equalityElimination independent_functionElimination productElimination independent_isectElimination independent_pairFormation voidElimination dependent_functionElimination intEquality lambdaFormation lambdaEquality rename setElimination applyLambdaEquality hyp_replacement imageElimination universeEquality functionEquality imageMemberEquality minusEquality closedConclusion lambdaEquality_alt instantiate dependent_set_memberEquality_alt approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop

Latex:
\mforall{}[a:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].    (\mSigma{}0  \mleq{}  i  <  n.  a  \muparrow{}  i  =  if  qeq(a;1)  then  n  else  (1  -  a  \muparrow{}  n/1  -  a)  fi  )



Date html generated: 2020_05_20-AM-09_26_14
Last ObjectModification: 2020_02_26-AM-09_59_18

Theory : rationals


Home Index