Nuprl Lemma : q-geometric-series
∀[a:ℚ]. ∀[n:ℕ].  (Σ0 ≤ i < n. a ↑ i = if qeq(a;1) then n else (1 - a ↑ n/1 - a) fi  ∈ ℚ)
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qsum: Σa ≤ j < b. E[j]
, 
qsub: r - s
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
qeq: qeq(r;s)
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
prop: ℙ
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
qmul: r * s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
qadd: r + s
, 
qsub: r - s
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
sum_of_geometric_prog_q, 
istype-nat, 
rationals_wf, 
qeq_wf2, 
int-subtype-rationals, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
istype-assert, 
istype-void, 
uiff_transitivity, 
eqtt_to_assert, 
assert-qeq, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
le_wf, 
subtype_rel_set, 
int_seg_wf, 
false_wf, 
int_seg_subtype_nat, 
qexp_wf, 
qsum_wf, 
equal_wf, 
squash_wf, 
true_wf, 
qexp-one, 
iff_weakening_equal, 
qmul_one_qrng, 
qsum-const, 
qadd_wf, 
qmul_wf, 
qinv_inv_q, 
istype-universe, 
mon_ident_q, 
subtype_rel_self, 
qadd_assoc, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
qdiv_wf, 
qmul-preserves-eq, 
qmul-qdiv-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
because_Cache, 
applyEquality, 
baseClosed, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
functionIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
voidElimination, 
dependent_functionElimination, 
intEquality, 
lambdaFormation, 
lambdaEquality, 
rename, 
setElimination, 
applyLambdaEquality, 
hyp_replacement, 
imageElimination, 
universeEquality, 
functionEquality, 
imageMemberEquality, 
minusEquality, 
closedConclusion, 
lambdaEquality_alt, 
instantiate, 
dependent_set_memberEquality_alt, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop
Latex:
\mforall{}[a:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].    (\mSigma{}0  \mleq{}  i  <  n.  a  \muparrow{}  i  =  if  qeq(a;1)  then  n  else  (1  -  a  \muparrow{}  n/1  -  a)  fi  )
Date html generated:
2020_05_20-AM-09_26_14
Last ObjectModification:
2020_02_26-AM-09_59_18
Theory : rationals
Home
Index