Nuprl Lemma : sum_of_geometric_prog_q
∀[a:ℚ]. ∀[n:ℕ].  (((1 + -(a)) * Σ0 ≤ i < n. a ↑ i) = (1 + -(a ↑ n)) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qsum: Σa ≤ j < b. E[j]
, 
qmul: r * s
, 
qadd: r + s
, 
rationals: ℚ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
minus: -n
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
q-rng-nexp: q-rng-nexp(r;n)
, 
qsum: Σa ≤ j < b. E[j]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qrng: <ℚ+*>
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_times: *
, 
pi2: snd(t)
, 
rng_plus: +r
, 
rng_one: 1
, 
rng_minus: -r
, 
infix_ap: x f y
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
squash: ↓T
, 
true: True
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
sum_of_geometric_prog, 
qrng_wf, 
iff_weakening_equal, 
qexp-eq-q-rng-nexp, 
qsum_wf, 
true_wf, 
squash_wf, 
equal_wf, 
int_seg_wf, 
false_wf, 
int_seg_subtype_nat, 
qmul_wf, 
int-subtype-rationals, 
qadd_wf, 
rationals_wf, 
nat_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
intEquality, 
functionEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
rename, 
setElimination, 
minusEquality, 
applyEquality, 
natural_numberEquality, 
because_Cache, 
hypothesisEquality, 
isect_memberFormation
Latex:
\mforall{}[a:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].    (((1  +  -(a))  *  \mSigma{}0  \mleq{}  i  <  n.  a  \muparrow{}  i)  =  (1  +  -(a  \muparrow{}  n)))
Date html generated:
2020_05_20-AM-09_25_57
Last ObjectModification:
2020_02_03-PM-02_28_16
Theory : rationals
Home
Index