Nuprl Lemma : sum_of_geometric_prog_q

[a:ℚ]. ∀[n:ℕ].  (((1 -(a)) * Σ0 ≤ i < n. a ↑ i) (1 -(a ↑ n)) ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n qsum: Σa ≤ j < b. E[j] qmul: s qadd: s rationals: nat: uall: [x:A]. B[x] minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  q-rng-nexp: q-rng-nexp(r;n) qsum: Σa ≤ j < b. E[j] uall: [x:A]. B[x] member: t ∈ T qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) rng_plus: +r rng_one: 1 rng_minus: -r infix_ap: y rev_implies:  Q iff: ⇐⇒ Q guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] squash: T true: True prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B uimplies: supposing a nat: subtype_rel: A ⊆B
Lemmas referenced :  sum_of_geometric_prog qrng_wf iff_weakening_equal qexp-eq-q-rng-nexp qsum_wf true_wf squash_wf equal_wf int_seg_wf false_wf int_seg_subtype_nat qmul_wf int-subtype-rationals qadd_wf rationals_wf nat_wf
Rules used in proof :  cut sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_functionElimination productElimination baseClosed imageMemberEquality intEquality functionEquality universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality lambdaFormation independent_pairFormation independent_isectElimination rename setElimination minusEquality applyEquality natural_numberEquality because_Cache hypothesisEquality isect_memberFormation

Latex:
\mforall{}[a:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].    (((1  +  -(a))  *  \mSigma{}0  \mleq{}  i  <  n.  a  \muparrow{}  i)  =  (1  +  -(a  \muparrow{}  n)))



Date html generated: 2020_05_20-AM-09_25_57
Last ObjectModification: 2020_02_03-PM-02_28_16

Theory : rationals


Home Index