Nuprl Lemma : qexp-eq-q-rng-nexp

[n:ℕ]. ∀[r:ℚ].  (r ↑ q-rng-nexp(r;n) ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n q-rng-nexp: q-rng-nexp(r;n) rationals: nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qexp: r ↑ n has-value: (a)↓ uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q prop: nat_plus: + subtype_rel: A ⊆B int_nzero: -o nequal: a ≠ b ∈  not: ¬A false: False guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q mk-rational: mk-rational(a;b) rationals: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] q-rng-nexp: q-rng-nexp(r;n) rng_nexp: e ↑n mon_nat_op: n ⋅ e mul_mon_of_rng: r↓xmn grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e qrng: <ℚ+*> rng_times: * rng_one: 1 nat_op: x(op;id) e itop: Π(op,id) lb ≤ i < ub. E[i] infix_ap: y ycomb: Y lt_int: i <j subtract: m ifthenelse: if then else fi  bfalse: ff decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb assert: b true: True squash: T iff: ⇐⇒ Q rev_implies:  Q b-union: A ⋃ B tunion: x:A.B[x] rev_uimplies: rev_uimplies(P;Q) qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) eq_int: (i =z j) qmul: s has-valueall: has-valueall(a)
Lemmas referenced :  value-type-has-value nat_wf set-value-type le_wf int-value-type qrep_wf nat_plus_wf equal_wf rationals_wf mk-rational_wf exp_wf2 exp_wf3 subtype_rel_sets less_than_wf nequal_wf nat_plus_properties nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base q-rng-nexp_wf exp-fastexp equals-qrep subtype_rel_transitivity b-union_wf int_nzero_wf subtype_quotient equal-wf-T-base bool_wf qeq_wf qeq-equiv subtype_rel_b-union-right subtype_rel_b-union subtype_rel_self subtype_rel_product intformle_wf int_formula_prop_le_lemma ge_wf exp0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot squash_wf true_wf qmul_wf iff_weakening_equal quotient-member-eq bfalse_wf ifthenelse_wf subtype_rel_b-union-left iff_imp_equal_bool qeq_wf2 int-subtype-rationals btrue_wf assert-qeq assert_wf iff_wf valueall-type-has-valueall rationals-valueall-type evalall-reduce exp_step decidable__equal_int itermMultiply_wf int_term_value_mul_lemma mul_nzero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality hypothesisEquality productEquality lambdaFormation productElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination isect_memberEquality axiomEquality because_Cache setElimination rename hyp_replacement applyLambdaEquality applyEquality setEquality dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll baseClosed intWeakElimination unionElimination equalityElimination promote_hyp instantiate cumulativity dependent_set_memberEquality imageElimination universeEquality imageMemberEquality dependent_pairEquality independent_pairEquality addLevel impliesFunctionality multiplyEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[r:\mBbbQ{}].    (r  \muparrow{}  n  =  q-rng-nexp(r;n))



Date html generated: 2018_05_21-PM-11_59_04
Last ObjectModification: 2017_07_26-PM-06_48_28

Theory : rationals


Home Index