Nuprl Lemma : qexp-eq-q-rng-nexp
∀[n:ℕ]. ∀[r:ℚ].  (r ↑ n = q-rng-nexp(r;n) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
q-rng-nexp: q-rng-nexp(r;n)
, 
rationals: ℚ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qexp: r ↑ n
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
mk-rational: mk-rational(a;b)
, 
rationals: ℚ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
q-rng-nexp: q-rng-nexp(r;n)
, 
rng_nexp: e ↑r n
, 
mon_nat_op: n ⋅ e
, 
mul_mon_of_rng: r↓xmn
, 
grp_op: *
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
grp_id: e
, 
qrng: <ℚ+*>
, 
rng_times: *
, 
rng_one: 1
, 
nat_op: n x(op;id) e
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
infix_ap: x f y
, 
ycomb: Y
, 
lt_int: i <z j
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
qeq: qeq(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
eq_int: (i =z j)
, 
qmul: r * s
, 
has-valueall: has-valueall(a)
Lemmas referenced : 
value-type-has-value, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
qrep_wf, 
nat_plus_wf, 
equal_wf, 
rationals_wf, 
mk-rational_wf, 
exp_wf2, 
exp_wf3, 
subtype_rel_sets, 
less_than_wf, 
nequal_wf, 
nat_plus_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
q-rng-nexp_wf, 
exp-fastexp, 
equals-qrep, 
subtype_rel_transitivity, 
b-union_wf, 
int_nzero_wf, 
subtype_quotient, 
equal-wf-T-base, 
bool_wf, 
qeq_wf, 
qeq-equiv, 
subtype_rel_b-union-right, 
subtype_rel_b-union, 
subtype_rel_self, 
subtype_rel_product, 
intformle_wf, 
int_formula_prop_le_lemma, 
ge_wf, 
exp0_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
squash_wf, 
true_wf, 
qmul_wf, 
iff_weakening_equal, 
quotient-member-eq, 
bfalse_wf, 
ifthenelse_wf, 
subtype_rel_b-union-left, 
iff_imp_equal_bool, 
qeq_wf2, 
int-subtype-rationals, 
btrue_wf, 
assert-qeq, 
assert_wf, 
iff_wf, 
valueall-type-has-valueall, 
rationals-valueall-type, 
evalall-reduce, 
exp_step, 
decidable__equal_int, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
mul_nzero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
productEquality, 
lambdaFormation, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
setElimination, 
rename, 
hyp_replacement, 
applyLambdaEquality, 
applyEquality, 
setEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
baseClosed, 
intWeakElimination, 
unionElimination, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
dependent_set_memberEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
dependent_pairEquality, 
independent_pairEquality, 
addLevel, 
impliesFunctionality, 
multiplyEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[r:\mBbbQ{}].    (r  \muparrow{}  n  =  q-rng-nexp(r;n))
Date html generated:
2018_05_21-PM-11_59_04
Last ObjectModification:
2017_07_26-PM-06_48_28
Theory : rationals
Home
Index