Nuprl Lemma : q-rng-nexp_wf

[r:ℚ]. ∀[n:ℕ].  (q-rng-nexp(r;n) ∈ ℚ)


Proof




Definitions occuring in Statement :  q-rng-nexp: q-rng-nexp(r;n) rationals: nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T q-rng-nexp: q-rng-nexp(r;n) subtype_rel: A ⊆B crng: CRng qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng: Rng
Lemmas referenced :  rng_nexp_wf qrng_wf crng_wf rng_car_wf nat_wf rationals_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality lambdaEquality setElimination rename hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[r:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].    (q-rng-nexp(r;n)  \mmember{}  \mBbbQ{})



Date html generated: 2016_05_15-PM-11_06_26
Last ObjectModification: 2015_12_27-PM-07_44_56

Theory : rationals


Home Index