Nuprl Lemma : q-rng-nexp_wf
∀[r:ℚ]. ∀[n:ℕ].  (q-rng-nexp(r;n) ∈ ℚ)
Proof
Definitions occuring in Statement : 
q-rng-nexp: q-rng-nexp(r;n)
, 
rationals: ℚ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
q-rng-nexp: q-rng-nexp(r;n)
, 
subtype_rel: A ⊆r B
, 
crng: CRng
, 
qrng: <ℚ+*>
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng: Rng
Lemmas referenced : 
rng_nexp_wf, 
qrng_wf, 
crng_wf, 
rng_car_wf, 
nat_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[r:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].    (q-rng-nexp(r;n)  \mmember{}  \mBbbQ{})
Date html generated:
2016_05_15-PM-11_06_26
Last ObjectModification:
2015_12_27-PM-07_44_56
Theory : rationals
Home
Index