Step
*
1
of Lemma
q-not-limit-zero-diverges
1. f : ℕ ⟶ ℚ
2. ∀n:ℕ. (0 ≤ f[n])
3. q : ℚ
4. 0 < q
5. c : ∀n:ℕ. ∃m:ℕ. ((n ≤ m) ∧ (q ≤ f[m]))
6. B : ℚ
⊢ ∃n:ℕ. (B ≤ Σ0 ≤ i < n. f[i])
BY
{ Assert ⌜∃N:ℕ. (B ≤ (N * q))⌝⋅ }
1
.....assertion..... 
1. f : ℕ ⟶ ℚ
2. ∀n:ℕ. (0 ≤ f[n])
3. q : ℚ
4. 0 < q
5. c : ∀n:ℕ. ∃m:ℕ. ((n ≤ m) ∧ (q ≤ f[m]))
6. B : ℚ
⊢ ∃N:ℕ. (B ≤ (N * q))
2
1. f : ℕ ⟶ ℚ
2. ∀n:ℕ. (0 ≤ f[n])
3. q : ℚ
4. 0 < q
5. c : ∀n:ℕ. ∃m:ℕ. ((n ≤ m) ∧ (q ≤ f[m]))
6. B : ℚ
7. ∃N:ℕ. (B ≤ (N * q))
⊢ ∃n:ℕ. (B ≤ Σ0 ≤ i < n. f[i])
Latex:
Latex:
1.  f  :  \mBbbN{}  {}\mrightarrow{}  \mBbbQ{}
2.  \mforall{}n:\mBbbN{}.  (0  \mleq{}  f[n])
3.  q  :  \mBbbQ{}
4.  0  <  q
5.  c  :  \mforall{}n:\mBbbN{}.  \mexists{}m:\mBbbN{}.  ((n  \mleq{}  m)  \mwedge{}  (q  \mleq{}  f[m]))
6.  B  :  \mBbbQ{}
\mvdash{}  \mexists{}n:\mBbbN{}.  (B  \mleq{}  \mSigma{}0  \mleq{}  i  <  n.  f[i])
By
Latex:
Assert  \mkleeneopen{}\mexists{}N:\mBbbN{}.  (B  \mleq{}  (N  *  q))\mkleeneclose{}\mcdot{}
Home
Index