Step
*
1
2
of Lemma
q-not-limit-zero-diverges
1. f : ℕ ⟶ ℚ
2. ∀n:ℕ. (0 ≤ f[n])
3. q : ℚ
4. 0 < q
5. c : ∀n:ℕ. ∃m:ℕ. ((n ≤ m) ∧ (q ≤ f[m]))
6. B : ℚ
7. ∃N:ℕ. (B ≤ (N * q))
⊢ ∃n:ℕ. (B ≤ Σ0 ≤ i < n. f[i])
BY
{ ((Assert ∃h:ℕ ⟶ ℕ. ∀n:ℕ. (n < h n ∧ (q ≤ f[h n])) BY
(InstConcl [⌜λn.(fst((c (n + 1))))⌝]⋅
THEN Auto
THEN ((Reduce 0 THEN GenConcl ⌜(c (n + 1)) = v ∈ (∃m:ℕ. (((n + 1) ≤ m) ∧ (q ≤ f[m])))⌝⋅) THENA Auto)
THEN D -2
THEN All Reduce
THEN Auto))
THEN D -1
) }
1
1. f : ℕ ⟶ ℚ
2. ∀n:ℕ. (0 ≤ f[n])
3. q : ℚ
4. 0 < q
5. c : ∀n:ℕ. ∃m:ℕ. ((n ≤ m) ∧ (q ≤ f[m]))
6. B : ℚ
7. ∃N:ℕ. (B ≤ (N * q))
8. h : ℕ ⟶ ℕ
9. ∀n:ℕ. (n < h n ∧ (q ≤ f[h n]))
⊢ ∃n:ℕ. (B ≤ Σ0 ≤ i < n. f[i])
Latex:
Latex:
1. f : \mBbbN{} {}\mrightarrow{} \mBbbQ{}
2. \mforall{}n:\mBbbN{}. (0 \mleq{} f[n])
3. q : \mBbbQ{}
4. 0 < q
5. c : \mforall{}n:\mBbbN{}. \mexists{}m:\mBbbN{}. ((n \mleq{} m) \mwedge{} (q \mleq{} f[m]))
6. B : \mBbbQ{}
7. \mexists{}N:\mBbbN{}. (B \mleq{} (N * q))
\mvdash{} \mexists{}n:\mBbbN{}. (B \mleq{} \mSigma{}0 \mleq{} i < n. f[i])
By
Latex:
((Assert \mexists{}h:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \mforall{}n:\mBbbN{}. (n < h n \mwedge{} (q \mleq{} f[h n])) BY
(InstConcl [\mkleeneopen{}\mlambda{}n.(fst((c (n + 1))))\mkleeneclose{}]\mcdot{}
THEN Auto
THEN ((Reduce 0 THEN GenConcl \mkleeneopen{}(c (n + 1)) = v\mkleeneclose{}\mcdot{}) THENA Auto)
THEN D -2
THEN All Reduce
THEN Auto))
THEN D -1
)
Home
Index