Nuprl Lemma : q-not-limit-zero-diverges
∀f:ℕ ⟶ ℚ
  (∃q:ℚ. (0 < q ∧ (∀n:ℕ. ∃m:ℕ. ((n ≤ m) ∧ (q ≤ f[m]))))) 
⇒ (∀B:ℚ. ∃n:ℕ. (B ≤ Σ0 ≤ i < n. f[i])) 
  supposing ∀n:ℕ. (0 ≤ f[n])
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j]
, 
qle: r ≤ s
, 
qless: r < s
, 
rationals: ℚ
, 
nat: ℕ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
not: ¬A
, 
guard: {T}
, 
false: False
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
cand: A c∧ B
, 
pi1: fst(t)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
compose: f o g
, 
sq_type: SQType(T)
, 
less_than: a < b
Lemmas referenced : 
qle_witness, 
int-subtype-rationals, 
nat_wf, 
rationals_wf, 
exists_wf, 
qless_wf, 
all_wf, 
le_wf, 
qle_wf, 
q-archimedean, 
qdiv_wf, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
equal-wf-T-base, 
qmul_preserves_qle2, 
subtype_rel_set, 
qle_weakening_lt_qorder, 
qmul_wf, 
squash_wf, 
true_wf, 
qmul_comm_qrng, 
qmul-qdiv-cancel, 
iff_weakening_equal, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
pi1_wf_top, 
equal_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
less_than_wf, 
fun_exp_wf, 
false_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
ge_wf, 
member-less_than, 
int_seg_properties, 
subtract-add-cancel, 
fun_exp1_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
fun_exp_add1, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtype_base_sq, 
int_subtype_base, 
lelt_wf, 
qsum_wf, 
qsum-qle, 
qsum-const, 
qle_transitivity_qorder, 
qsum-subsequence-qle, 
subtype_rel_dep_function, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
independent_functionElimination, 
rename, 
productElimination, 
productEquality, 
because_Cache, 
setElimination, 
functionEquality, 
independent_isectElimination, 
voidElimination, 
baseClosed, 
intEquality, 
dependent_pairFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
universeEquality, 
dependent_set_memberEquality, 
addEquality, 
unionElimination, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_pairEquality, 
comment, 
intWeakElimination, 
hyp_replacement, 
Error :applyLambdaEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}
    (\mexists{}q:\mBbbQ{}.  (0  <  q  \mwedge{}  (\mforall{}n:\mBbbN{}.  \mexists{}m:\mBbbN{}.  ((n  \mleq{}  m)  \mwedge{}  (q  \mleq{}  f[m])))))  {}\mRightarrow{}  (\mforall{}B:\mBbbQ{}.  \mexists{}n:\mBbbN{}.  (B  \mleq{}  \mSigma{}0  \mleq{}  i  <  n.  f[i])) 
    supposing  \mforall{}n:\mBbbN{}.  (0  \mleq{}  f[n])
Date html generated:
2016_10_26-AM-06_37_32
Last ObjectModification:
2016_07_12-AM-08_00_11
Theory : rationals
Home
Index