Nuprl Lemma : q-not-limit-zero-diverges

f:ℕ ⟶ ℚ
  (∃q:ℚ(0 < q ∧ (∀n:ℕ. ∃m:ℕ((n ≤ m) ∧ (q ≤ f[m])))))  (∀B:ℚ. ∃n:ℕ(B ≤ Σ0 ≤ i < n. f[i])) 
  supposing ∀n:ℕ(0 ≤ f[n])


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qle: r ≤ s qless: r < s rationals: nat: uimplies: supposing a so_apply: x[s] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B so_apply: x[s] implies:  Q exists: x:A. B[x] and: P ∧ Q prop: so_lambda: λ2x.t[x] nat: not: ¬A guard: {T} false: False true: True squash: T iff: ⇐⇒ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top cand: c∧ B pi1: fst(t) le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ≤ j < k compose: g sq_type: SQType(T) less_than: a < b
Lemmas referenced :  qle_witness int-subtype-rationals nat_wf rationals_wf exists_wf qless_wf all_wf le_wf qle_wf q-archimedean qdiv_wf qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity equal-wf-T-base qmul_preserves_qle2 subtype_rel_set qle_weakening_lt_qorder qmul_wf squash_wf true_wf qmul_comm_qrng qmul-qdiv-cancel iff_weakening_equal nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf pi1_wf_top equal_wf decidable__lt intformless_wf int_formula_prop_less_lemma less_than_wf fun_exp_wf false_wf int_seg_wf int_seg_subtype_nat ge_wf member-less_than int_seg_properties subtract-add-cancel fun_exp1_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma fun_exp_add1 decidable__equal_int intformeq_wf int_formula_prop_eq_lemma subtype_base_sq int_subtype_base lelt_wf qsum_wf qsum-qle qsum-const qle_transitivity_qorder qsum-subsequence-qle subtype_rel_dep_function subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination natural_numberEquality hypothesis applyEquality functionExtensionality independent_functionElimination rename productElimination productEquality because_Cache setElimination functionEquality independent_isectElimination voidElimination baseClosed intEquality dependent_pairFormation imageElimination equalityTransitivity equalitySymmetry imageMemberEquality universeEquality dependent_set_memberEquality addEquality unionElimination int_eqEquality isect_memberEquality voidEquality independent_pairFormation computeAll independent_pairEquality comment intWeakElimination hyp_replacement Error :applyLambdaEquality,  instantiate cumulativity

Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}
    (\mexists{}q:\mBbbQ{}.  (0  <  q  \mwedge{}  (\mforall{}n:\mBbbN{}.  \mexists{}m:\mBbbN{}.  ((n  \mleq{}  m)  \mwedge{}  (q  \mleq{}  f[m])))))  {}\mRightarrow{}  (\mforall{}B:\mBbbQ{}.  \mexists{}n:\mBbbN{}.  (B  \mleq{}  \mSigma{}0  \mleq{}  i  <  n.  f[i])) 
    supposing  \mforall{}n:\mBbbN{}.  (0  \mleq{}  f[n])



Date html generated: 2016_10_26-AM-06_37_32
Last ObjectModification: 2016_07_12-AM-08_00_11

Theory : rationals


Home Index