Nuprl Lemma : qsum-subsequence-qle
∀[f:ℕ ⟶ ℚ]
  ∀[k:ℕ]. ∀[g:ℕk + 1 ⟶ ℕ].  Σ0 ≤ i < k. f[g i] ≤ Σ0 ≤ i < g k. f[i] supposing ∀n:ℕk + 1. ∀i:ℕn.  g i < g n 
  supposing ∀n:ℕ. (0 ≤ f[n])
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j]
, 
qle: r ≤ s
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
rev_uimplies: rev_uimplies(P;Q)
, 
qge: a ≥ b
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
qle_witness, 
qsum_wf, 
int_seg_wf, 
le_wf, 
int_seg_subtype_nat, 
istype-false, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtract-1-ge-0, 
subtract-add-cancel, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
nat_wf, 
qle_wf, 
int-subtype-rationals, 
rationals_wf, 
qsum-non-neg, 
all_wf, 
false_wf, 
lelt_wf, 
satisfiable-full-omega-tt, 
squash_wf, 
true_wf, 
sum_unroll_base_q, 
iff_weakening_equal, 
equal_wf, 
istype-universe, 
sum_unroll_hi_q, 
qadd_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__le, 
subtype_rel_self, 
le_weakening2, 
sum_split_q, 
subtype_rel_function, 
int_seg_subtype, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
add-commutes, 
le-add-cancel, 
qle_functionality_wrt_implies, 
qadd_functionality_wrt_qle, 
qle_weakening_eq_qorder, 
summand-qle-sum, 
qle_reflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
applyEquality, 
dependent_set_memberEquality_alt, 
productElimination, 
imageMemberEquality, 
baseClosed, 
productIsType, 
functionIsType, 
addEquality, 
unionElimination, 
functionEquality, 
lambdaFormation, 
computeAll, 
voidEquality, 
isect_memberEquality, 
intEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
functionExtensionality, 
lambdaEquality, 
isect_memberFormation, 
imageElimination, 
universeEquality, 
instantiate, 
hyp_replacement, 
applyLambdaEquality, 
minusEquality, 
multiplyEquality
Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}]
    \mforall{}[k:\mBbbN{}].  \mforall{}[g:\mBbbN{}k  +  1  {}\mrightarrow{}  \mBbbN{}].
        \mSigma{}0  \mleq{}  i  <  k.  f[g  i]  \mleq{}  \mSigma{}0  \mleq{}  i  <  g  k.  f[i]  supposing  \mforall{}n:\mBbbN{}k  +  1.  \mforall{}i:\mBbbN{}n.    g  i  <  g  n 
    supposing  \mforall{}n:\mBbbN{}.  (0  \mleq{}  f[n])
Date html generated:
2019_10_16-PM-00_33_03
Last ObjectModification:
2018_10_10-AM-11_05_30
Theory : rationals
Home
Index