Nuprl Lemma : qsum-subsequence-qle

[f:ℕ ⟶ ℚ]
  ∀[k:ℕ]. ∀[g:ℕ1 ⟶ ℕ].  Σ0 ≤ i < k. f[g i] ≤ Σ0 ≤ i < k. f[i] supposing ∀n:ℕ1. ∀i:ℕn.  i < 
  supposing ∀n:ℕ(0 ≤ f[n])


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qle: r ≤ s rationals: int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] apply: a function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T less_than': less_than'(a;b) true: True subtype_rel: A ⊆B le: A ≤ B guard: {T} decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m rev_uimplies: rev_uimplies(P;Q) qge: a ≥ b
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf qle_witness qsum_wf int_seg_wf le_wf int_seg_subtype_nat istype-false int_seg_properties itermAdd_wf int_term_value_add_lemma subtract-1-ge-0 subtract-add-cancel decidable__lt intformnot_wf int_formula_prop_not_lemma nat_wf qle_wf int-subtype-rationals rationals_wf qsum-non-neg all_wf false_wf lelt_wf satisfiable-full-omega-tt squash_wf true_wf sum_unroll_base_q iff_weakening_equal equal_wf istype-universe sum_unroll_hi_q qadd_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__le subtype_rel_self le_weakening2 sum_split_q subtype_rel_function int_seg_subtype not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel qle_functionality_wrt_implies qadd_functionality_wrt_qle qle_weakening_eq_qorder summand-qle-sum qle_reflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType because_Cache applyEquality dependent_set_memberEquality_alt productElimination imageMemberEquality baseClosed productIsType functionIsType addEquality unionElimination functionEquality lambdaFormation computeAll voidEquality isect_memberEquality intEquality dependent_pairFormation dependent_set_memberEquality functionExtensionality lambdaEquality isect_memberFormation imageElimination universeEquality instantiate hyp_replacement applyLambdaEquality minusEquality multiplyEquality

Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}]
    \mforall{}[k:\mBbbN{}].  \mforall{}[g:\mBbbN{}k  +  1  {}\mrightarrow{}  \mBbbN{}].
        \mSigma{}0  \mleq{}  i  <  k.  f[g  i]  \mleq{}  \mSigma{}0  \mleq{}  i  <  g  k.  f[i]  supposing  \mforall{}n:\mBbbN{}k  +  1.  \mforall{}i:\mBbbN{}n.    g  i  <  g  n 
    supposing  \mforall{}n:\mBbbN{}.  (0  \mleq{}  f[n])



Date html generated: 2019_10_16-PM-00_33_03
Last ObjectModification: 2018_10_10-AM-11_05_30

Theory : rationals


Home Index