Nuprl Lemma : summand-qle-sum

[a,b:ℤ]. ∀[E:{a..b-} ⟶ ℚ].  ∀[i:{a..b-}]. (E[i] ≤ Σa ≤ j < b. E[j]) supposing ∀j:{a..b-}. (0 ≤ E[j])


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qle: r ≤ s rationals: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_seg: {i..j-} so_apply: x[s] so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B and: P ∧ Q all: x:A. B[x] lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q ifthenelse: if then else fi  btrue: tt bfalse: ff delta: delta(i;j) true: True bool: 𝔹 unit: Unit it: squash: T
Lemmas referenced :  qsum-delta qle_witness int_seg_wf qsum_wf all_wf qle_wf int-subtype-rationals rationals_wf band_wf le_int_wf lt_int_wf assert_wf le_wf less_than_wf qsum-qle qmul_wf delta_wf subtype_rel_set lelt_wf bnot_wf not_wf int_seg_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert iff_transitivity iff_weakening_uiff assert_of_band assert_of_le_int assert_of_lt_int eqff_to_assert assert_of_bnot eq_int_wf equal-wf-T-base int_subtype_base qle_reflexivity uiff_transitivity assert_of_eq_int equal_wf squash_wf true_wf qmul_one_qrng iff_weakening_equal qmul_zero_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis applyEquality functionExtensionality sqequalRule lambdaEquality independent_functionElimination isect_memberEquality because_Cache natural_numberEquality equalityTransitivity equalitySymmetry functionEquality intEquality productEquality productElimination independent_isectElimination lambdaFormation hyp_replacement applyLambdaEquality dependent_pairFormation int_eqEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll unionElimination instantiate cumulativity impliesFunctionality baseClosed dependent_set_memberEquality equalityElimination imageElimination imageMemberEquality universeEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[E:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].
    \mforall{}[i:\{a..b\msupminus{}\}].  (E[i]  \mleq{}  \mSigma{}a  \mleq{}  j  <  b.  E[j])  supposing  \mforall{}j:\{a..b\msupminus{}\}.  (0  \mleq{}  E[j])



Date html generated: 2018_05_22-AM-00_00_05
Last ObjectModification: 2017_07_26-PM-06_49_08

Theory : rationals


Home Index