Nuprl Lemma : summand-qle-sum
∀[a,b:ℤ]. ∀[E:{a..b-} ⟶ ℚ].  ∀[i:{a..b-}]. (E[i] ≤ Σa ≤ j < b. E[j]) supposing ∀j:{a..b-}. (0 ≤ E[j])
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j]
, 
qle: r ≤ s
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
delta: delta(i;j)
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
squash: ↓T
Lemmas referenced : 
qsum-delta, 
qle_witness, 
int_seg_wf, 
qsum_wf, 
all_wf, 
qle_wf, 
int-subtype-rationals, 
rationals_wf, 
band_wf, 
le_int_wf, 
lt_int_wf, 
assert_wf, 
le_wf, 
less_than_wf, 
qsum-qle, 
qmul_wf, 
delta_wf, 
subtype_rel_set, 
lelt_wf, 
bnot_wf, 
not_wf, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_le_int, 
assert_of_lt_int, 
eqff_to_assert, 
assert_of_bnot, 
eq_int_wf, 
equal-wf-T-base, 
int_subtype_base, 
qle_reflexivity, 
uiff_transitivity, 
assert_of_eq_int, 
equal_wf, 
squash_wf, 
true_wf, 
qmul_one_qrng, 
iff_weakening_equal, 
qmul_zero_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
applyEquality, 
functionExtensionality, 
sqequalRule, 
lambdaEquality, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
productEquality, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
hyp_replacement, 
applyLambdaEquality, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
instantiate, 
cumulativity, 
impliesFunctionality, 
baseClosed, 
dependent_set_memberEquality, 
equalityElimination, 
imageElimination, 
imageMemberEquality, 
universeEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[E:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].
    \mforall{}[i:\{a..b\msupminus{}\}].  (E[i]  \mleq{}  \mSigma{}a  \mleq{}  j  <  b.  E[j])  supposing  \mforall{}j:\{a..b\msupminus{}\}.  (0  \mleq{}  E[j])
Date html generated:
2018_05_22-AM-00_00_05
Last ObjectModification:
2017_07_26-PM-06_49_08
Theory : rationals
Home
Index