Nuprl Lemma : qsum-delta

[a,b:ℤ]. ∀[E:{a..b-} ⟶ ℚ]. ∀[i:ℤ].  a ≤ j < b. E[j] delta(i;j) if a ≤i ∧b i <then E[i] else fi  ∈ ℚ)


Proof




Definitions occuring in Statement :  delta: delta(i;j) qsum: Σa ≤ j < b. E[j] qmul: s rationals: band: p ∧b q int_seg: {i..j-} le_int: i ≤j ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] int_upper: {i...} so_lambda: λ2x.t[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a band: p ∧b q ifthenelse: if then else fi  so_apply: x[s] int_seg: {i..j-} subtype_rel: A ⊆B lelt: i ≤ j < k prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top squash: T true: True decidable: Dec(P) subtract: m le: A ≤ B less_than': less_than'(a;b) delta: delta(i;j) label: ...$L... t infix_ap: y ycomb: Y itop: Π(op,id) lb ≤ i < ub. E[i] rng_zero: 0 rng_plus: +r qrng: <ℚ+*> grp_id: e pi1: fst(t) pi2: snd(t) grp_op: * add_grp_of_rng: r↓+gp mon_itop: Π lb ≤ i < ub. E[i] rng_sum: rng_sum qsum: Σa ≤ j < b. E[j]
Lemmas referenced :  istype-int all_wf int_seg_wf rationals_wf eqtt_to_assert assert_of_le_int assert_of_lt_int equal_wf qsum_wf qmul_wf delta_wf le_wf less_than_wf eqff_to_assert int_subtype_base bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base int_upper_wf le_int_wf lt_int_wf full-omega-unsat intformand_wf intformless_wf itermVar_wf intformle_wf int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf squash_wf true_wf istype-universe sum_unroll_base_q int-subtype-rationals subtype_rel_self iff_weakening_equal int_seg_properties subtype_rel_function subtract_wf int_seg_subtype le_reflexive decidable__le istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 set_subtype_base int_le_to_int_upper int_upper_ind bfalse_wf int_upper_properties itermSubtract_wf itermConstant_wf intformnot_wf int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_not_lemma btrue_wf equal-wf-base sum_unroll_hi_q decidable__lt qadd_wf int_seg_inc eq_int_wf intformeq_wf int_formula_prop_eq_lemma bnot_wf not_wf bor_wf or_wf intformor_wf int_formula_prop_or_lemma decidable__equal_int itermAdd_wf int_term_value_add_lemma bool_cases iff_transitivity assert_of_band assert_of_bnot uiff_transitivity assert_functionality_wrt_uiff bnot_thru_band bnot_of_le_int bnot_of_lt_int assert_of_bor assert_of_eq_int qmul_zero_qrng qadd_comm_q mon_ident_q qmul_one_qrng lelt_wf satisfiable-full-omega-tt
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt introduction extract_by_obid hypothesis hypothesisEquality lambdaEquality_alt sqequalHypSubstitution isectElimination thin functionEquality setElimination rename because_Cache closedConclusion sqequalRule intEquality inhabitedIsType unionElimination equalityElimination productElimination independent_isectElimination applyEquality universeIsType dependent_set_memberEquality_alt independent_pairFormation productIsType equalityTransitivity equalitySymmetry dependent_pairFormation_alt equalityIsType2 baseApply baseClosed promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination equalityIsType1 functionIsType natural_numberEquality approximateComputation int_eqEquality isect_memberEquality_alt imageElimination universeEquality imageMemberEquality addEquality minusEquality multiplyEquality productEquality hyp_replacement applyLambdaEquality equalityIsType4 unionIsType inlFormation_alt inrFormation_alt axiomEquality isect_memberEquality dependent_set_memberEquality dependent_pairFormation lambdaFormation functionExtensionality lambdaEquality isect_memberFormation computeAll voidEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[E:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[i:\mBbbZ{}].
    (\mSigma{}a  \mleq{}  j  <  b.  E[j]  *  delta(i;j)  =  if  a  \mleq{}z  i  \mwedge{}\msubb{}  i  <z  b  then  E[i]  else  0  fi  )



Date html generated: 2019_10_16-PM-00_31_54
Last ObjectModification: 2018_10_11-PM-11_46_17

Theory : rationals


Home Index