Nuprl Lemma : qsum-delta
∀[a,b:ℤ]. ∀[E:{a..b-} ⟶ ℚ]. ∀[i:ℤ].  (Σa ≤ j < b. E[j] * delta(i;j) = if a ≤z i ∧b i <z b then E[i] else 0 fi  ∈ ℚ)
Proof
Definitions occuring in Statement : 
delta: delta(i;j)
, 
qsum: Σa ≤ j < b. E[j]
, 
qmul: r * s
, 
rationals: ℚ
, 
band: p ∧b q
, 
int_seg: {i..j-}
, 
le_int: i ≤z j
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
prop: ℙ
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
decidable: Dec(P)
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
delta: delta(i;j)
, 
label: ...$L... t
, 
infix_ap: x f y
, 
ycomb: Y
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
rng_zero: 0
, 
rng_plus: +r
, 
qrng: <ℚ+*>
, 
grp_id: e
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
grp_op: *
, 
add_grp_of_rng: r↓+gp
, 
mon_itop: Π lb ≤ i < ub. E[i]
, 
rng_sum: rng_sum, 
qsum: Σa ≤ j < b. E[j]
Lemmas referenced : 
istype-int, 
all_wf, 
int_seg_wf, 
rationals_wf, 
eqtt_to_assert, 
assert_of_le_int, 
assert_of_lt_int, 
equal_wf, 
qsum_wf, 
qmul_wf, 
delta_wf, 
le_wf, 
less_than_wf, 
eqff_to_assert, 
int_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal-wf-T-base, 
int_upper_wf, 
le_int_wf, 
lt_int_wf, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
squash_wf, 
true_wf, 
istype-universe, 
sum_unroll_base_q, 
int-subtype-rationals, 
subtype_rel_self, 
iff_weakening_equal, 
int_seg_properties, 
subtype_rel_function, 
subtract_wf, 
int_seg_subtype, 
le_reflexive, 
decidable__le, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
set_subtype_base, 
int_le_to_int_upper, 
int_upper_ind, 
bfalse_wf, 
int_upper_properties, 
itermSubtract_wf, 
itermConstant_wf, 
intformnot_wf, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
btrue_wf, 
equal-wf-base, 
sum_unroll_hi_q, 
decidable__lt, 
qadd_wf, 
int_seg_inc, 
eq_int_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
bnot_wf, 
not_wf, 
bor_wf, 
or_wf, 
intformor_wf, 
int_formula_prop_or_lemma, 
decidable__equal_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
bool_cases, 
iff_transitivity, 
assert_of_band, 
assert_of_bnot, 
uiff_transitivity, 
assert_functionality_wrt_uiff, 
bnot_thru_band, 
bnot_of_le_int, 
bnot_of_lt_int, 
assert_of_bor, 
assert_of_eq_int, 
qmul_zero_qrng, 
qadd_comm_q, 
mon_ident_q, 
qmul_one_qrng, 
lelt_wf, 
satisfiable-full-omega-tt
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
introduction, 
extract_by_obid, 
hypothesis, 
hypothesisEquality, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
setElimination, 
rename, 
because_Cache, 
closedConclusion, 
sqequalRule, 
intEquality, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
applyEquality, 
universeIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation_alt, 
equalityIsType2, 
baseApply, 
baseClosed, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
equalityIsType1, 
functionIsType, 
natural_numberEquality, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
addEquality, 
minusEquality, 
multiplyEquality, 
productEquality, 
hyp_replacement, 
applyLambdaEquality, 
equalityIsType4, 
unionIsType, 
inlFormation_alt, 
inrFormation_alt, 
axiomEquality, 
isect_memberEquality, 
dependent_set_memberEquality, 
dependent_pairFormation, 
lambdaFormation, 
functionExtensionality, 
lambdaEquality, 
isect_memberFormation, 
computeAll, 
voidEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[E:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[i:\mBbbZ{}].
    (\mSigma{}a  \mleq{}  j  <  b.  E[j]  *  delta(i;j)  =  if  a  \mleq{}z  i  \mwedge{}\msubb{}  i  <z  b  then  E[i]  else  0  fi  )
Date html generated:
2019_10_16-PM-00_31_54
Last ObjectModification:
2018_10_11-PM-11_46_17
Theory : rationals
Home
Index