Nuprl Lemma : int_seg_inc

[i,j:ℤ].  ({i..j-} ⊆r ℚ)


Proof




Definitions occuring in Statement :  rationals: int_seg: {i..j-} subtype_rel: A ⊆B uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_set rationals_wf lelt_wf int-subtype-rationals
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis lambdaEquality hypothesisEquality independent_isectElimination axiomEquality isect_memberEquality because_Cache

Latex:
\mforall{}[i,j:\mBbbZ{}].    (\{i..j\msupminus{}\}  \msubseteq{}r  \mBbbQ{})



Date html generated: 2019_10_16-AM-11_47_02
Last ObjectModification: 2018_09_17-PM-06_26_52

Theory : rationals


Home Index