Nuprl Lemma : int_seg_inc
∀[i,j:ℤ].  ({i..j-} ⊆r ℚ)
Proof
Definitions occuring in Statement : 
rationals: ℚ
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_set, 
rationals_wf, 
lelt_wf, 
int-subtype-rationals
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
independent_isectElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[i,j:\mBbbZ{}].    (\{i..j\msupminus{}\}  \msubseteq{}r  \mBbbQ{})
Date html generated:
2019_10_16-AM-11_47_02
Last ObjectModification:
2018_09_17-PM-06_26_52
Theory : rationals
Home
Index