Nuprl Lemma : qsum-non-neg
∀[j:ℕ]. ∀[f:ℕj ⟶ ℚ].  0 ≤ Σ0 ≤ n < j. f[n] supposing ∀n:ℕj. (0 ≤ f[n])
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j]
, 
qle: r ≤ s
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
subtype_rel_set, 
qmul_zero_qrng, 
iff_weakening_equal, 
qsum-const, 
true_wf, 
squash_wf, 
lelt_wf, 
le_wf, 
less_than_wf, 
int-subtype-rationals, 
qsum-qle, 
nat_wf, 
rationals_wf, 
qle_wf, 
all_wf, 
int_seg_wf, 
qsum_wf, 
qle_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
setElimination, 
rename, 
hypothesisEquality, 
lambdaEquality, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
independent_isectElimination, 
lambdaFormation, 
intEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
productElimination, 
dependent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[j:\mBbbN{}].  \mforall{}[f:\mBbbN{}j  {}\mrightarrow{}  \mBbbQ{}].    0  \mleq{}  \mSigma{}0  \mleq{}  n  <  j.  f[n]  supposing  \mforall{}n:\mBbbN{}j.  (0  \mleq{}  f[n])
Date html generated:
2016_05_15-PM-11_15_41
Last ObjectModification:
2016_01_16-PM-09_18_56
Theory : rationals
Home
Index