Nuprl Lemma : qsum-non-neg

[j:ℕ]. ∀[f:ℕj ⟶ ℚ].  0 ≤ Σ0 ≤ n < j. f[n] supposing ∀n:ℕj. (0 ≤ f[n])


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qle: r ≤ s rationals: int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: all: x:A. B[x] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B squash: T true: True iff: ⇐⇒ Q
Lemmas referenced :  subtype_rel_set qmul_zero_qrng iff_weakening_equal qsum-const true_wf squash_wf lelt_wf le_wf less_than_wf int-subtype-rationals qsum-qle nat_wf rationals_wf qle_wf all_wf int_seg_wf qsum_wf qle_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis applyEquality because_Cache sqequalRule setElimination rename hypothesisEquality lambdaEquality independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry functionEquality independent_isectElimination lambdaFormation intEquality dependent_set_memberEquality independent_pairFormation productElimination dependent_functionElimination imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[j:\mBbbN{}].  \mforall{}[f:\mBbbN{}j  {}\mrightarrow{}  \mBbbQ{}].    0  \mleq{}  \mSigma{}0  \mleq{}  n  <  j.  f[n]  supposing  \mforall{}n:\mBbbN{}j.  (0  \mleq{}  f[n])



Date html generated: 2016_05_15-PM-11_15_41
Last ObjectModification: 2016_01_16-PM-09_18_56

Theory : rationals


Home Index