Nuprl Lemma : sum_split_q

[a,b,c:ℤ].
  (∀[E:{a..c-} ⟶ ℚ]. a ≤ j < c. E[j] a ≤ j < b. E[j] + Σb ≤ j < c. E[j]) ∈ ℚ)) supposing ((b ≤ c) and (a ≤ b))


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qadd: s rationals: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) infix_ap: y qsum: Σa ≤ j < b. E[j]
Lemmas referenced :  rng_sum_split qrng_wf crng_subtype_rng
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[a,b,c:\mBbbZ{}].
    (\mforall{}[E:\{a..c\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].  (\mSigma{}a  \mleq{}  j  <  c.  E[j]  =  (\mSigma{}a  \mleq{}  j  <  b.  E[j]  +  \mSigma{}b  \mleq{}  j  <  c.  E[j])))  supposing 
          ((b  \mleq{}  c)  and 
          (a  \mleq{}  b))



Date html generated: 2020_05_20-AM-09_25_22
Last ObjectModification: 2020_02_03-PM-02_17_25

Theory : rationals


Home Index