Step
*
2
2
2
of Lemma
qdiv-qdiv
.....subterm..... T:t
3:n
1. a : ℚ
2. b : ℚ
3. c : ℚ
4. ¬(b = 0 ∈ ℚ)
5. ¬(c = 0 ∈ ℚ)
6. ¬((b/c) = 0 ∈ ℚ)
7. a = ((a * c/b) * (b/c)) ∈ ℚ
8. ((1/(b/c)) * a) = ((1/(b/c)) * (a * c/b) * (b/c)) ∈ ℚ
⊢ (a * c/b) = ((1/(b/c)) * (a * c/b) * (b/c)) ∈ ℚ
BY
{ xxx((RWO "qmul_com" 0 THENM RWO "qmul_assoc" 0) THEN Auto)xxx }
1
1. a : ℚ
2. b : ℚ
3. c : ℚ
4. ¬(b = 0 ∈ ℚ)
5. ¬(c = 0 ∈ ℚ)
6. ¬((b/c) = 0 ∈ ℚ)
7. a = ((a * c/b) * (b/c)) ∈ ℚ
8. ((1/(b/c)) * a) = ((1/(b/c)) * (a * c/b) * (b/c)) ∈ ℚ
⊢ (c * a/b) = ((a * c/b) * (b/c) * (1/(b/c))) ∈ ℚ
Latex:
Latex:
.....subterm..... T:t
3:n
1. a : \mBbbQ{}
2. b : \mBbbQ{}
3. c : \mBbbQ{}
4. \mneg{}(b = 0)
5. \mneg{}(c = 0)
6. \mneg{}((b/c) = 0)
7. a = ((a * c/b) * (b/c))
8. ((1/(b/c)) * a) = ((1/(b/c)) * (a * c/b) * (b/c))
\mvdash{} (a * c/b) = ((1/(b/c)) * (a * c/b) * (b/c))
By
Latex:
xxx((RWO "qmul\_com" 0 THENM RWO "qmul\_assoc" 0) THEN Auto)xxx
Home
Index