Nuprl Lemma : qdiv-qdiv

[a,b,c:ℚ].  ((a/(b/c)) (a c/b) ∈ ℚsupposing ((¬(c 0 ∈ ℚ)) and (b 0 ∈ ℚ)))


Proof




Definitions occuring in Statement :  qdiv: (r/s) qmul: s rationals: uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: qdiv: (r/s) not: ¬A all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q subtype_rel: A ⊆B iff: ⇐⇒ Q implies:  Q or: P ∨ Q false: False true: True squash: T guard: {T} rev_implies:  Q
Lemmas referenced :  not_wf equal-wf-T-base rationals_wf qinv-zero qmul-zero qinv_wf assert-qeq assert_wf qeq_wf2 int-subtype-rationals qmul_wf or_wf equal_wf qdiv_wf squash_wf true_wf qmul_one_qrng qmul_comm_qrng iff_weakening_equal qmul-qdiv-cancel4 qmul_assoc_qrng qmul-qdiv-cancel qmul_com qmul_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality baseClosed sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination addLevel impliesFunctionality dependent_functionElimination productElimination natural_numberEquality applyEquality independent_functionElimination lambdaFormation unionElimination voidElimination hyp_replacement applyLambdaEquality lambdaEquality imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    ((a/(b/c))  =  (a  *  c/b))  supposing  ((\mneg{}(c  =  0))  and  (\mneg{}(b  =  0)))



Date html generated: 2018_05_21-PM-11_58_41
Last ObjectModification: 2017_07_26-PM-06_48_17

Theory : rationals


Home Index