Nuprl Lemma : qdiv-qdiv
∀[a,b,c:ℚ].  ((a/(b/c)) = (a * c/b) ∈ ℚ) supposing ((¬(c = 0 ∈ ℚ)) and (¬(b = 0 ∈ ℚ)))
Proof
Definitions occuring in Statement : 
qdiv: (r/s)
, 
qmul: r * s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
qdiv: (r/s)
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
false: False
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
not_wf, 
equal-wf-T-base, 
rationals_wf, 
qinv-zero, 
qmul-zero, 
qinv_wf, 
assert-qeq, 
assert_wf, 
qeq_wf2, 
int-subtype-rationals, 
qmul_wf, 
or_wf, 
equal_wf, 
qdiv_wf, 
squash_wf, 
true_wf, 
qmul_one_qrng, 
qmul_comm_qrng, 
iff_weakening_equal, 
qmul-qdiv-cancel4, 
qmul_assoc_qrng, 
qmul-qdiv-cancel, 
qmul_com, 
qmul_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
baseClosed, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
addLevel, 
impliesFunctionality, 
dependent_functionElimination, 
productElimination, 
natural_numberEquality, 
applyEquality, 
independent_functionElimination, 
lambdaFormation, 
unionElimination, 
voidElimination, 
hyp_replacement, 
applyLambdaEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    ((a/(b/c))  =  (a  *  c/b))  supposing  ((\mneg{}(c  =  0))  and  (\mneg{}(b  =  0)))
Date html generated:
2018_05_21-PM-11_58_41
Last ObjectModification:
2017_07_26-PM-06_48_17
Theory : rationals
Home
Index