Step
*
of Lemma
qinv-negative
∀[v:ℚ]. (1/v) < 0 supposing v < 0
BY
{ (Auto
THEN (Assert ¬(v = 0 ∈ ℚ) BY
(RelRST THEN Auto))
THEN Auto
THEN (Assert ¬↑qeq(v;0) BY
(RW assert_pushdownC 0 THEN Auto))
THEN (InstLemma `qmul-positive` [⌜v⌝;⌜(1/v)⌝]⋅ THENA Auto)
THEN D -1
THEN (Thin (-2))
THEN D -1) }
1
.....antecedent.....
1. v : ℚ
2. v < 0
3. ¬(v = 0 ∈ ℚ)
4. ¬↑qeq(v;0)
⊢ 0 < v * (1/v)
2
1. v : ℚ
2. v < 0
3. ¬(v = 0 ∈ ℚ)
4. ¬↑qeq(v;0)
5. (0 < v ∧ 0 < (1/v)) ∨ (0 < -(v) ∧ 0 < -((1/v)))
⊢ (1/v) < 0
Latex:
Latex:
\mforall{}[v:\mBbbQ{}]. (1/v) < 0 supposing v < 0
By
Latex:
(Auto
THEN (Assert \mneg{}(v = 0) BY
(RelRST THEN Auto))
THEN Auto
THEN (Assert \mneg{}\muparrow{}qeq(v;0) BY
(RW assert\_pushdownC 0 THEN Auto))
THEN (InstLemma `qmul-positive` [\mkleeneopen{}v\mkleeneclose{};\mkleeneopen{}(1/v)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN D -1
THEN (Thin (-2))
THEN D -1)
Home
Index